Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unlabelled: The relationship between physical activity and central nervous system mechanisms of pain in fibromyalgia (FM) is unknown. This study determined whether physical activity was predictive of brain responses to experimental pain in FM using functional magnetic resonance imaging (fMRI). Thirty-four participants (n = 16 FM; n = 18 Control) completed self-report and accelerometer measures of physical activity and underwent fMRI of painful heat stimuli. In FM patients, positive relationships (P < .005) between physical activity and brain responses to pain were observed in the dorsolateral prefrontal cortex, posterior cingulate cortex, and the posterior insula, regions implicated in pain regulation. Negative relationships (P < .005) were found for the primary sensory and superior parietal cortices, regions implicated in the sensory aspects of pain. Greater physical activity was significantly (P < .05) associated with decreased pain ratings to repeated heat stimuli for FM patients. A similar nonsignificant trend was observed in controls. In addition, brain responses to pain were significantly (P < .005) different between FM patients categorized as low active and those categorized as high active. In controls, positive relationships (P < .005) were observed in the lateral prefrontal, anterior cingulate, and superior temporal cortices and the posterior insula. Our results suggest an association between measures of physical activity and central nervous system processing of pain.
Perspective: Our data suggest that brain responses to pain represent a dynamic process where perception and modulation co-occur and that physical activity plays a role in balancing these processes. Physically active FM patients appear to maintain their ability to modulate pain while those who are less active do not.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111901 | PMC |
http://dx.doi.org/10.1016/j.jpain.2010.12.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!