This paper reviews some of what is known about ion transport through the cells of the mammalian stria vascularis, and discusses how the endolymph and endocochlear potential in scala media are produced by the stria's main cell types. It discusses the role of each cells' ion transport proteins from an engineering perspective, and the advantages and disadvantages in using the different transport proteins in the different cells to perform their different roles. To aid this discussion, the use of spreadsheet analysis in the modelling of ion transport in single cells and homogenous epithelia is outlined, including the current-voltage (IV) characteristics of the three main categories of transport proteins (pores, ports and pumps), and the constraint equations that apply under various conditions (the voltage or ionic steady states in the open- and closed-circuit conditions). Also discussed are the circulation of K(+) within the cochlea, and the chloride, salt and water balance of scala media and stria vascularis, and what transport processes may be required to maintain such a balance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2011.01.010 | DOI Listing |
Tissue Cell
December 2024
ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt. Electronic address:
Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
December 2024
Department of Otorhinolaryngology, Gazi University Faculty of Medicine, Ankara, Turkey.
Objective: This study aimed to attenuate cochlear inflammation following noise-induced hearing loss by targeting IL-1. We evaluated the effectiveness of IL-1 inhibition through auditory and histological assessments in an animal model.
Study Design: Experimental animal study.
Background: Hearing loss affects over 10% of the global population. Inflammation is a key factor in hearing loss caused by noise, infection, and aging, damaging various hearing-related tissues (e.g.
View Article and Find Full Text PDFIndian Dermatol Online J
September 2024
Department of ENT and Head and Neck Surgery, All India Institute of Medical Sciences, Guntur, Andhra Pradesh, India.
Background: Melanocytes in the hair and melanocytes in the stria vascularis of the inner ear have common origins. Many congenital and acquired disorders of cutaneous pigmentation have auditory abnormalities. There is a paucity of studies on the auditory associations of early graying.
View Article and Find Full Text PDFNeuroradiol J
November 2024
Department of Radiology, Massachusetts General Hospital, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!