Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpara.2011.01.008 | DOI Listing |
Clin Immunol
December 2024
Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France. Electronic address:
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, Japan.
Here, we examined the immunomodulating effects of Heyndrickxia coagulans SANK70258 (SANK70258). Mouse splenocytes treated with γ-ray-irradiated SANK70258 produced higher levels of IFN-γ than those with 7 types of lactic acid bacteria. IFN-γ was mainly produced by NK cells, involving IL-12/IL-23, dendritic cells (DCs), and NFκB signaling.
View Article and Find Full Text PDFAging Cell
December 2024
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.
Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.
View Article and Find Full Text PDFSci Rep
December 2024
National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.
Glioma is the most common malignant brain tumor. Previous studies have reported that calnexin (CANX) is significantly up-regulated in a variety of malignant tumors, including glioma, but its biological function and mechanism in glioma is still unclear. In this study, differentially expressed proteins in 3 primary glioblastoma multiforme (GBM) tissues and 3 paracancer tissues were identified by liquid chromatography-tandem mass spectrometry-based proteomic and bioinformatic analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!