Zebrafish (Danio rerio) are now firmly established as a powerful research model for many areas of biology and medicine. Here, we review some achievements of zebrafish-based assays for modeling human diseases and for drug discovery and development. For drug discovery, zebrafish are especially valuable in the earlier stages of research as they provide a model organism to demonstrate a new treatment's efficacy and toxicity before more costly mammalian models are used. This review provides examples of compounds known to be toxic to humans that have been demonstrated to functional similarly in zebrafish. Major advantages of zebrafish embryons are that they are readily permeable to small molecules added to their incubation medium and the transparent chorion enables the easy observation of development. Assay of acute toxicity (LC50 estimation) in embryos can also include the screening for developmental disorders as an indicator of teratogenic effects. We used zebrafish for toxicity testing of new drugs on the base of phospholipid nanoparticles. The organization of the genome and the pathways controlling signal transduction appear to be highly conserved between zebrafish and humans that allow using zebrafish for modeling of human diseases some examples of which are illustrated in this paper.

Download full-text PDF

Source
http://dx.doi.org/10.18097/pbmc20105601120DOI Listing

Publication Analysis

Top Keywords

model organism
8
modeling human
8
human diseases
8
drug discovery
8
zebrafish
7
[zebrafish model
4
organism biomedical
4
biomedical studies]
4
studies] zebrafish
4
zebrafish danio
4

Similar Publications

Antarctic krill vertical migrations modulate seasonal carbon export.

Science

January 2025

Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, nipaluna/Hobart, Tasmania, Australia.

Vertical migrations by marine organisms contribute to carbon export by consumption of surface phytoplankton followed by defecation in the deep ocean. However, biogeochemical models lack observational data, leading to oversimplified representation of carbon cycling by migrating organisms, such as Antarctic krill (). Using a numerical model informed by 1 year of acoustic observations in the East Antarctic, we estimated the total particulate organic carbon (POC) flux from krill fecal pellets to be 9.

View Article and Find Full Text PDF

Objective: This study aimed to develop and validate a nomogram to predict the risk of sepsis in non-traumatic subarachnoid hemorrhage (SAH) patients using data from the MIMIC-IV database.

Methods: A total of 803 SAH patients meeting the inclusion criteria were randomly divided into a training set (563 cases) and a validation set (240 cases). Independent prognostic factors were identified through forward stepwise logistic regression, and a nomogram was created based on these factors.

View Article and Find Full Text PDF

In regulatory aquatic risk assessment, toxicokinetic-toxicodynamic (TKTD) methods, such as the generalized unified threshold model of survival (GUTS), are already established and considered ready for use, whereas TKTD methods for aboveground terrestrial species, like arthropods, are less developed and currently not intended for risk assessment. This could be due to the fact that exposure in aboveground terrestrial systems is more event-based (feeding, contact, overspray, etc.), whereas exposure in aquatic systems is simply related to substance concentrations in the surrounding water.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!