Single nucleotide polymorphisms (SNPs) are important markers in disease genetics and pharmacogenomic studies. Oligodeoxyribonucleotides (ONs) modified with 5-[3-(1-pyrenecarboxamido)propynyl]-2'-deoxyuridine monomer X enable detection of SNPs at non-stringent conditions due to differential fluorescence emission of matched versus mismatched nucleic acid duplexes. Herein, the thermal denaturation and optical spectroscopic characteristics of monomer X are compared to the corresponding locked nucleic acid (LNA) and α-L-LNA monomers Y and Z. ONs modified with monomers Y or Z result in a) larger increases in fluorescence intensity upon hybridization to complementary DNA, b) formation of more brightly fluorescent duplexes due to markedly larger fluorescence emission quantum yields (Φ(F)=0.44-0.80) and pyrene extinction coefficients, and c) improved optical discrimination of SNPs in DNA targets. Optical spectroscopy studies suggest that the nucleobase moieties of monomers X-Z adopt anti and syn conformations upon hybridization with matched and mismatched targets, respectively. The polarity-sensitive 1-pyrenecarboxamido fluorophore is, thereby, either positioned in the polar major groove or in the hydrophobic duplex core close to quenching nucleobases. Calculations suggest that the bicyclic skeletons of LNA and α-L-LNA monomers Y and Z influence the glycosidic torsional angle profile leading to altered positional control and photophysical properties of the C5-fluorophore.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201002109DOI Listing

Publication Analysis

Top Keywords

lna α-l-lna
12
positional control
8
ons modified
8
fluorescence emission
8
nucleic acid
8
α-l-lna monomers
8
c5-functionalized dna
4
dna lna
4
α-l-lna positional
4
control polarity-sensitive
4

Similar Publications

In this paper, a sub-1dB Low Noise Amplifier (LNA) with several gain modes, including amplification and attenuation modes required for the fifth and fourth generations (5G/4G) of mobile network applications, is proposed. Its current consumption is adaptive for every gain mode and varies to lower currents for lower amplifications due to the importance of current consumption for mobile network applications. The proposed LNA features an innovative architecture with a three-core input structure supporting multi-gain modes, achieving high gain and ultra-low noise performance.

View Article and Find Full Text PDF

Sequence-Specific Free Energy Changes in DNA/RNA Induced by a Single LNA-T Modification in Antisense Oligonucleotides.

Int J Mol Sci

December 2024

Konan Laboratory for Oligonucleotide Therapeutics (KOLOT), 7-1-20 Minatojima-Minamimachi, Kobe 650-0047, Japan.

2',4'-methylene bridged nucleic acid/locked nucleic acid (2',4'-BNA/LNA; LNA) is a modified nucleic acid that improves the function of antisense oligonucleotide therapeutics. In particular, LNA in the DNA strand increases its binding affinity for the target RNA. Predicting the binding affinities of LNA-containing antisense oligonucleotides and RNA duplexes is useful for designing antisense oligonucleotides.

View Article and Find Full Text PDF

This study utilizes flow cytometry (FCM) to evaluate the high nucleic acid (HNA) and low nucleic acid (LNA) content of intact cells for monitoring bacterial dynamics in drinking water treatment and supply systems. Our findings indicate that chlorine and nutrients differently impact components of bacterial populations. HNA bacteria, characterized by high metabolic rates, quickly react to nutrient alterations, making them suitable indicators of growth under varying water treatment and supply conditions.

View Article and Find Full Text PDF

Temperature-dependent rate constants for the reaction of the -dodecane radical cation (RH˙) with trivalent lanthanide ion-complexed ,,','-tetraoctyl diglycolamide (TODGA) over the range 10-40 °C have been determined using electron pulse radiolysis/transient absorption spectroscopy techniques. For the free ligand, an activation energy of = 20.4 ± 0.

View Article and Find Full Text PDF

Introduction: Modification of natural enzymes to introduce new properties and enhance existing ones is a central challenge in bioengineering. This study is focused on the development of Taq polymerase mutants that show enhanced reverse transcriptase (RTase) activity while retaining other desirable properties such as fidelity, 5'- 3' exonuclease activity, effective deoxyuracyl incorporation, and tolerance to locked nucleic acid (LNA)-containing substrates. Our objective was to use AI-driven rational design combined with multiparametric wet-lab analysis to identify and validate Taq polymerase mutants with an optimal combination of these properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!