miR-21 downregulates the tumor suppressor P12 CDK2AP1 and stimulates cell proliferation and invasion.

J Cell Biochem

Department of Oral and Maxillofacial Surgery, School of Stomatology, Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, China.

Published: March 2011

The present study was undertaken to investigate the regulation of P12(CDK2AP1) by miRNAs. A conserved target site for miR-21 within the CDK2AP1-3'-UTR at nt 349-370 was predicted by bioinformatics software and an inverse correlation of miR-21 and CDK2AP1 protein was observed. Highly specific amplification and quantification of miR-21 was achieved using real-time RT-PCR. Transfection of HaCaT cells with pre-miR-21 significantly suppressed a luciferase reporter including the CDK2AP1-3'-UTR, whereas transfection of Tca8113 with anti-miR-21 increased activity of this reporter. This was abolished when a construct mutated at the miR-21/nt 349-370 target site was used instead. Anti-miR-21-transfected Tca8113 cells showed an increase of CDK2AP1 protein and reduced proliferation and invasion. Resected primary tumors and tumor-free surgical margins of 18 patients with head and neck squamous cell carcinomas demonstrated an inverse correlation between miR-21 and P12(CDK2AP1). This study shows that P12(CDK2AP1) is downregulated by miR-21 and that miR-21 promotes proliferation and invasion in cultured cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.22995DOI Listing

Publication Analysis

Top Keywords

proliferation invasion
12
target site
8
inverse correlation
8
correlation mir-21
8
cdk2ap1 protein
8
mir-21
7
mir-21 downregulates
4
downregulates tumor
4
tumor suppressor
4
suppressor p12
4

Similar Publications

Long non-coding RNAs (lncRNAs) have emerged as pivotal regulatory molecules in cancer biology. Among these, long intergenic non-protein coding RNA 02418 (LINC02418), a recently identified lncRNA, has been linked to endometrial cancer (EC), although its function and operational mechanisms are largely unclear. The present investigation aims to elucidate the molecular mechanism through which LINC02418 influences EC pathogenesis.

View Article and Find Full Text PDF

Metabolic reprogramming stands out as a defining characteristic of cancer, including glioblastoma (GB), enabling tumor cells to overcome growth and survival challenges in adverse conditions. The dysregulation of metabolic processes in GB is crucial to its pathogenesis, influencing both tumorigenesis and the disease's invasive tendencies. This altered metabolism supplies essential energy substrates for uncontrolled cell proliferation and also creates an immunosuppressive microenvironment, complicating conventional therapies.

View Article and Find Full Text PDF

Background/aims: Cholangiocarcinoma (CCA) is a malignant and insidious tumor that is tricky to treat. Long non-coding RNA (LncRNA) LINC01123 is a biomolecule that influences cancer progression by regulating gene expression via influencing the regulatory function of microRNAs in gene expression. Therefore, this study investigated the connection between LINC01123 and CCA and explored the underlying mechanism.

View Article and Find Full Text PDF

Background/aims: Colon adenocarcinoma (COAD) is a prevalent malignant tumor of the digestive system. Previous research has indicated that RNA N6-methyladenosine (m6A) methyltransferase RNA-binding motif protein-15 (RBM15) is involved in various cancers. We aimed to investigate the function of RBM15 in COAD progression and its underlying molecular mechanism.

View Article and Find Full Text PDF

miR-224-5p Suppresses Non-Small Cell Lung Cancer via IL6ST-Mediated Regulation of the JAK2/STAT3 Pathway.

Thorac Cancer

January 2025

Department of Thoracic Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.

Background: Our study aimed to explore the specific functions and potential mechanisms of miR-224-5p in non-small cell lung cancer (NSCLC).

Methods: We first analyzed the expression of miR-224-5p in NSCLC patients and cell lines through the GEO database and qRT-PCR analysis. Then, we used MTT assays, wound healing assays, Transwell assays, and western blotting to evaluate the effects of miR-224-5p on NSCLC cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!