Abscisic acid-, stress- and ripening (ASR) -induced proteins are plant-specific proteins whose expression is up-regulated under abiotic stresses or during fruit ripening. In this study, we characterized an ASR protein from plantain to explore its physiological roles under osmotic stress. The expression pattern of MpAsr gene shows that MpAsr gene changed little at the mRNA level, while the MpASR protein accumulates under osmotic treatment. Through bioinformatic-based predictions, circular dichroism spectrometry, and proteolysis and heat-stability assays, we determined that the MpASR protein is an intrinsically unstructured protein in solution. We demonstrated that the hydrophilic MpASR protein could protect L: -lactate dehydrogenase (L: -LDH) from cold-induced aggregation. Furthermore, heterologous expression of MpAsr in Escherichia coli and Arabidopsis enhanced the tolerance of transformants to osmotic stress. Transgenic 35S::MpAsr Arabidopsis seeds had a higher germination frequency than wild-type seeds under unfavorable conditions. At the physiological level, 35S::MpAsr Arabidopsis showed increased soluble sugars and decreased cell membrane damage under osmotic stress. Thus, our results suggest that the MpASR protein may act as an osmoprotectant and water-retaining molecule to help cell adjustment to water deficit caused by osmotic stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-011-1030-1 | DOI Listing |
J Glaucoma
January 2025
Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA.
We present a case of Acute Angle-Closure Crisis (AACC) precipitated by primary transient psychogenic polydipsia; we believe that our case is the first of its kind to be reported. A 74-year-old male presented to the emergency department with altered mental status due to acute-onset hyponatremia. Six days after admission, the patient noticed painful loss of vision in his right eye and an ipsilateral headache lasting 10-15 minutes.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
Nuclear factor of activated T-cells 5 (NFAT5) is a transcription factor known for its role in osmotic stress adaptation in the renal inner medulla, due to the osmotic gradient that is generated between the renal cortex and renal inner medulla. However, its broader implications in kidney injury and chronic kidney disease (CKD) are less understood. Here we used two different Cre deleter mice (Ksp1.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Chemistry, Emory University Atlanta GA 30322 USA
Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University, Aberystwyth, United Kingdom.
Nitrogen and water are the primary resources limiting agricultural production worldwide. We have demonstrated the ability of a novel halotolerant bacterial endophyte, s CBE, to induce osmotic stress tolerance in under nitrogen-deprived conditions. Additionally, we aimed to identify the molecular factors in plants that contribute to the beneficial effects induced by CBE in .
View Article and Find Full Text PDFPlant Sci
January 2025
Shanghai Agrobiological Gene Center, Shanghai 201106, China; Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China. Electronic address:
Nuclear factor Y (NF-Y) is an evolutionarily conserved heterotrimeric transcription factor in eukaryotes. In a previous study, OsNF-YB12 was confirmed to be associated with drought tolerance using the Ecotilling method. In this study, real-time quantitative RT-PCR revealed that OsNF-YB12 was induced by various abiotic stresses and phytohormones, with expression levels differing between leaves and roots.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!