Lamins are nuclear intermediate filament proteins. They are involved in most nuclear activities and are essential for retaining the mechano-elastic properties of the nucleus. Somatic cells of vertebrates express lamins A, B1 and B2 while lamin LIII, a major component of the amphibian oocyte lamina is absent in mammals. The organization of the lamina of germ cells differs significantly from that of somatic cells. Mammalian spermatogenic cells express two short lamins, C2 and B3, that are splice isoforms of lamin A and B2, respectively. Here we identify the previously described Xenopus lamin LIV as splice variant of the lamin LIII gene. LIV contains 40 extra residues in coil 2A of the rod domain, which results in altered assembly properties. Xenopus lamin LIV and mammalian B3 assemble into short structures rather than into long IF-like filaments. Expression of lamin LIV is restricted to male germ cells suggesting that it might be the functional equivalent of mammalian lamin B3. We provide evidence that lamins C2 and B3 are restricted to the mammalian lineage and describe the lamin composition of Xenopus sperm. Our results show that the evolution of germ cell-specific lamins followed separate and distinctly different paths in amphibians and mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035121PMC
http://dx.doi.org/10.4161/nucl.1.1.10517DOI Listing

Publication Analysis

Top Keywords

lamin liv
16
xenopus lamin
12
lamin
10
lamin composition
8
amphibians mammals
8
somatic cells
8
lamin liii
8
germ cells
8
liv
5
lamins
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!