We demonstrate that a force microscope operated in a bimodal mode enables the imaging and detection of superparamagnetic particles down to 5 nm. The bimodal method exploits the nanomechanical coupling of the excited modes to enhance the sensitivity of the higher mode to detect changes in material properties. The coupling requires the presence of nonlinear forces. Remarkably, bimodal operation enables us to identify changes of slowly varying forces (quasi-linear) in the presence of a stronger nonlinear force. Thus, unambiguous identification of single apoferritin (non-magnetic) and ferritin (magnetic) molecules in air and liquid is accomplished.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/22/12/125708 | DOI Listing |
Phys Rev Lett
November 2024
Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland.
Cold ions in traps are well-established, highly controllable systems with a wide variety of applications in quantum science, precision spectroscopy, clocks, and chemistry. Nanomechanical oscillators are used in advanced sensing applications and for exploring the border between classical and quantum physics. Here, we report on the implementation of a hybrid system combining a metallic nanowire with laser-cooled ions in a miniaturized ion trap.
View Article and Find Full Text PDFWe theoretically present a flexible method to obtain dual-channel optical bistability (OB) in a coupled system consisting of a metallic nanoshell (MNS) and a carbon nanotube (CNT) nanomechanical resonator (NR) beyond the dipole approximation. The MNS is made of a metallic core and a dielectric shell. The results show that, the four-wave mixing signal is suppressed significantly due to multipole polarizations in comparison to that in the dipole approximation.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
In this study, a new lightweight Al-Ti-Ta alloy was developed through a synergistic approach, combining CALPHAD methodology and entropy-driven design. Following compositional optimization, the AlTiTa (at.%) alloy was fabricated and isothermally heat-treated at 475 °C for 24 h to attain equilibrium.
View Article and Find Full Text PDFAdv Mater
November 2024
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Sci Rep
October 2024
Indian Institute of Technology Madras, Chennai, 600036, India.
Phonon antibunching, a phenomenon arising from the quantum statistics of mechanical vibrations, has attracted significant attention due to its potential applications in quantum information processing, sensing, and energy harvesting. Here, we present a comprehensive investigation of phonon antibunching in a system consisting of three weakly nonlinear coupled nanomechanical resonators. We analytically derive and study the antibunching behavior of phonons in the proposed system and bring insight into the underlying mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!