Fibrin structure and stability have been linked to many thrombotic diseases, including venous thromboembolism. Analysis of the molecular mechanisms that affect fibrin structure and stability became possible when the crystal structure of fibrinogen was solved. Biochemical studies of natural and recombinant variant fibrinogens have examined the interactions that mediate the conversion of soluble fibrinogen to the insoluble fibrin network. These studies identified intermolecular interactions that control fibrin structure, although some critical events remain ambiguous. Studies show that fibrin structure modulates the enzymatic lysis of the fibrin network, so the molecular mechanisms that control structure also control stability. Studies show that the mechanical stability of the fibrin clot depends on the properties of the fibrin monomer, leading investigators to explore the molecular basis of the monomer's mechanical properties. The work summarized here provides insights that might allow the development of pharmaceuticals and treatments to modulate fibrin structure and stability in vivo and thereby prevent or limit thrombotic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070401 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.110.213389 | DOI Listing |
Micromachines (Basel)
December 2024
Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan.
We developed a portable microfluidic system that combines spontaneous lumen formation from human umbilical endothelial cells (HUVECs) in fibrin-collagen hydrogels with active perfusion controlled by a braille actuator. Adaptive interstitial flow and feedthrough perfusion switching enabled the successful culture of spontaneously formed naturally branched lumens for more than one month. We obtained many large-area (2 mm × 3 mm) long-term (more than 30 days per run) time-lapse image datasets of the in vitro luminal network using this microfluidic system.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation.
View Article and Find Full Text PDFDent J (Basel)
January 2025
Department of Conservative Dentistry with Endodontics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland.
Traditional root canal therapy (RCT) effectively removes diseased or necrotic pulp tissue and replaces it with inorganic materials. Regenerative endodontics is an alternative to conventional RCT by using biologically based approaches to restore the pulp-dentin complex. This review explores emerging techniques, including autogenic and allogenic pulp transplantation, platelet-rich fibrin, human amniotic membrane scaffolds, specialized pro-resolving mediators, nanofibrous and bioceramic scaffolds, injectable hydrogels, dentin matrix proteins, and cell-homing strategies.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!