Background: We have previously described the essential role of the retinoid-inducible nuclear factor (RINF) during differentiation of hematopoietic cells and suggested its putative involvement in myeloid leukemia and preleukemia. Here, we have investigated whether this gene could have a deregulated expression in malignant tissues compared with their normal tissues of origin and if this potential deregulation could be associated with important clinicopathological parameters.

Patients And Methods: RINF messenger RNA expression was examined in biopsies from locally advanced breast tumors, metastatic malignant melanomas, and papillary thyroid carcinomas and compared with their paired or nonpaired normal reference samples. Further, the prognostic role of RINF expression was evaluated in locally advanced breast cancer.

Results: RINF expression was significantly higher in all tumor forms (primary breast, and thyroid cancers and metastatic melanomas) as compared with normal control tissues (P < 0.001 for each comparison). Importantly, high levels of RINF expression correlated to a poor overall survival in breast cancer (P = 0.013). This finding was confirmed in three independent public microarray datasets (P = 0.043, n = 234; P = 0.016, n = 69; P = 0.001, n = 196) and was independent of tamoxifen therapy. Notably, high levels of RINF was strongly associated with TP53 wild-type status (P = 0.002) possibly indicating that high levels of RINF could substitute for TP53 mutations as an oncogenic mechanism during the malignant development of some cases of breast cancer.

Conclusions: Our data indicate that (i) RINF overexpression is associated with the malignant phenotype in solid tumors and (ii) RINF overexpression represents an independent molecular marker for poor prognosis in breast tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/annonc/mdq737DOI Listing

Publication Analysis

Top Keywords

rinf expression
12
high levels
12
levels rinf
12
rinf
10
solid tumors
8
breast cancer
8
compared normal
8
locally advanced
8
advanced breast
8
breast tumors
8

Similar Publications

Recombinant porcine interferon δ8 inhibited porcine deltacoronavirus infection in vitro and in vivo.

Int J Biol Macromol

November 2024

Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, College of Life Science, Nanyang Normal University, Nanyang, Henan 473000, China. Electronic address:

Porcine deltacoronavirus (PDCoV) poses a significant threat to both the pig industry and public safety, and has recently been identified in humans. Currently, there are no commercially available vaccines or antiviral treatments for PDCoV. In this study, recombinant porcine interferon δ8 (rINF-δ8) expressed by the HEK 293F expression system was used to evaluated its antiviral activity against PDCoV both in vitro and in vivo.

View Article and Find Full Text PDF

Idax and Rinf facilitate expression of Tet enzymes to promote neural and suppress trophectodermal programs during differentiation of embryonic stem cells.

Stem Cell Res

May 2022

Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA. Electronic address:

The Inhibitor of disheveled and axin (Idax) and its ortholog the Retinoid inducible nuclear factor (Rinf) are DNA binding proteins with nuclear and cytoplasmic functions. Rinf is expressed in embryonic stem cells (ESCs) where it regulates transcription of the Ten-eleven translocation (Tet) enzymes, promoting neural and suppressing mesendoderm/trophectoderm differentiation. Here, we find that Idax, which is not expressed in ESCs, is induced upon differentiation.

View Article and Find Full Text PDF

The epigenetic regulator RINF (CXXC5) maintains expression in human immature erythroid cells and sustains red blood cells expansion.

Haematologica

January 2022

Université de Paris, Institut Cochin, INSERM, CNRS, F-75014 Paris, France; Laboratory of Excellence GR-ex, Paris, France; Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris.

The gene CXXC5, encoding a Retinoid-Inducible Nuclear Factor (RINF), is located within a region at 5q31.2 commonly deleted in myelodysplastic syndrome (MDS) and adult acute myeloid leukemia (AML). RINF may act as an epigenetic regulator and has been proposed as a tumor suppressor in hematopoietic malignancies.

View Article and Find Full Text PDF

Rinf Regulates Pluripotency Network Genes and Tet Enzymes in Embryonic Stem Cells.

Cell Rep

August 2019

Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA. Electronic address:

The Retinoid inducible nuclear factor (Rinf), also known as CXXC5, is a nuclear protein, but its functions in the context of the chromatin are poorly defined. We find that in mouse embryonic stem cells (mESCs), Rinf binds to the chromatin and is enriched at promoters and enhancers of Tet1, Tet2, and pluripotency genes. The Rinf-bound regions show significant overlapping occupancy of pluripotency factors Nanog, Oct4, and Sox2, as well as Tet1 and Tet2.

View Article and Find Full Text PDF

Analysis of EGF receptor oligomerization by homo-FRET.

Methods Cell Biol

June 2014

Cell Biology, Department of Biology, Science Faculty, Utrecht University, Utrecht, Netherlands.

Growth factor receptors are present in the plasma membrane of resting cells as monomers or (pre)dimers. Ligand binding results in higher-order oligomerization of ligand-receptor complexes. To study the regulation of receptor clustering, several experimental techniques have been developed in the last decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!