Inhibition by cardiac glycosides of Na(+), K(+)-ATPase reduces sodium efflux from myocytes and may lead to Na(+) and Ca(2+) overload and detrimental effects on mechanical function, energy metabolism, and electrical activity. We hypothesized that inhibition of sodium persistent inward current (late I(Na)) would reduce ouabain's effect to cause cellular Na(+) loading and its detrimental metabolic (decrease of ATP) and functional (arrhythmias, contracture) effects. Therefore, we determined effects of ouabain on concentrations of intracellular sodium (Na(+)(i)) and high-energy phosphates using (23)Na and (31)P NMR, the amplitude of late I(Na) using the whole-cell patch-clamp technique, and contractility and electrical activity of guinea pig isolated hearts, papillary muscles, and ventricular myocytes in the absence and presence of inhibitors of late I(Na). Ouabain (1-1.3 μM) increased Na(+)(i) and late I(Na) of guinea pig isolated hearts and myocytes by 3.7- and 4.2-fold, respectively. The late I(Na) inhibitors ranolazine and tetrodotoxin significantly reduced ouabain-stimulated increases in Na(+)(i) and late I(Na). Reductions of ATP and phosphocreatine contents and increased diastolic tension in ouabain-treated hearts were also markedly attenuated by ranolazine. Furthermore, the ouabain-induced increase of late I(Na) was also attenuated by the Ca(2+)-calmodulin-dependent kinase I inhibitors KN-93 [N-[2-[[[3-(4-chlorophenyl)-2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide] and autocamide-2 related inhibitory peptide, but not by KN-92 [2-[N-(4'-methoxybenzenesulfonyl)]amino-N-(4'-chlorophenyl)-2-propenyl-N-methylbenzylamine phosphate]. We conclude that ouabain-induced Na(+) and Ca(2+) overload is ameliorated by the inhibition of late I(Na).

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.110.176776DOI Listing

Publication Analysis

Top Keywords

late ina
32
na+ ca2+
8
ca2+ overload
8
electrical activity
8
late
8
ina
8
guinea pig
8
pig isolated
8
isolated hearts
8
na+i late
8

Similar Publications

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are known for their benefits in conditions like cardiovascular diseases in type 2 diabetes and obesity. They also show promise for aging-related conditions with minimal side effects. However, their impact on cardiovascular risk is still debated.

View Article and Find Full Text PDF

Tomatidine, a major tomato glycoalkaloid, is effective for the prevention of skeletal muscle wasting and enhancing mitophagy. However, its effects on transmembrane ionic currents are not well explored. In this study, we explored the interactions between tomatidine and Na+ current.

View Article and Find Full Text PDF

The sodium/glucose cotransporter 2 inhibitor Empagliflozin inhibits long QT 3 late sodium currents in a mutation specific manner.

J Mol Cell Cardiol

January 2025

Department of Pharmacology, Alberta Diabetes Institute, Faculty of Medicine and Dentistry, University of Alberta, 7-55 Medical Sciences Building, Edmonton T6G 2H7, Alberta, Canada. Electronic address:

Article Synopsis
  • Sodium/glucose cotransporter 2 inhibitors (SGLT2is), such as empagliflozin, show potential heart protection benefits in individuals with or without diabetes and can inhibit a key cardiac sodium current linked to congenital long QT syndrome type 3 (LQT3).
  • Researchers used the whole-cell patch-clamp technique to study how empagliflozin affects late sodium current (late I) in various LQT3 mutations of the Nav1.5 channel.
  • Empagliflozin specifically inhibited late I in certain mutations without altering channel kinetics, suggesting it could be an effective targeted treatment for patients with LQT3 mutations in the inactivation gate area.
View Article and Find Full Text PDF

Automaticity of the Pulmonary Vein Myocardium and the Effect of Class I Antiarrhythmic Drugs.

Int J Mol Sci

November 2024

Department of Pharmacology, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama Funabashi, Chiba 274-8510, Japan.

The pulmonary vein wall contains a myocardial layer whose ectopic automaticity is the major cause of atrial fibrillation. This review summarizes the results obtained in isolated pulmonary vein myocardium from small experimental animals, focusing on the studies with the guinea pig. The diversity in the action potential waveform reflects the difference in the repolarizing potassium channel currents involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!