It has long been known that animal heterotrimeric Gαβγ proteins are activated by cell-surface receptors that promote GTP binding to the Gα subunit and dissociation of the heterotrimer. In contrast, the Gα protein from Arabidopsis thaliana (AtGPA1) can activate itself without a receptor or other exchange factor. It is unknown how AtGPA1 is regulated by Gβγ and the RGS (regulator of G protein signaling) protein AtRGS1, which is comprised of an RGS domain fused to a receptor-like domain. To better understand the cycle of G protein activation and inactivation in plants, we purified and reconstituted AtGPA1, full-length AtRGS1, and two putative Gβγ dimers. We show that the Arabidopsis Gα protein binds to its cognate Gβγ dimer directly and in a nucleotide-dependent manner. Although animal Gβγ dimers inhibit GTP binding to the Gα subunit, AtGPA1 retains fast activation in the presence of its cognate Gβγ dimer. We show further that the full-length AtRGS1 protein accelerates GTP hydrolysis and thereby counteracts the fast nucleotide exchange rate of AtGPA1. Finally, we show that AtGPA1 is less stable in complex with GDP than in complex with GTP or the Gβγ dimer. Molecular dynamics simulations and biophysical studies reveal that altered stability is likely due to increased dynamic motion in the N-terminal α-helix and Switch II of AtGPA1. Thus, despite profound differences in the mechanisms of activation, the Arabidopsis G protein is readily inactivated by its cognate RGS protein and forms a stable, GDP-bound, heterotrimeric complex similar to that found in animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075661 | PMC |
http://dx.doi.org/10.1074/jbc.M110.190355 | DOI Listing |
Nat Struct Mol Biol
January 2025
Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
The Rpd3S histone deacetylase complex has a crucial role in genomic integrity by deacetylating transcribed nucleosomes following RNA polymerase (Pol) II passage. Cryo-EM studies highlight the importance of asymmetrical Rco1-Eaf3 dimers in nucleosome binding, yet the interaction dynamics with nucleosomal substrates alongside elongating Pol II are poorly understood. Here we demonstrate the essential function of the Rco1 N-terminal intrinsically disordered region (IDR) in modulating Pol II association, in which K/R mutations within the Rco1 IDR impair interaction of Rpd3S with the C-terminal domain (CTD) of Rpb1, without affecting nucleosome recognition or complex integrity.
View Article and Find Full Text PDFNature
January 2025
Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany.
The oxygen-sensitive molybdenum-dependent nitrogenase of Azotobacter vinelandii is protected from oxidative damage by a reversible 'switch-off' mechanism. It forms a complex with a small ferredoxin, FeSII (ref. ) or the 'Shethna protein II', which acts as an O sensor and associates with the two component proteins of nitrogenase when its [2Fe:2S] cluster becomes oxidized.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
All-atom molecular dynamics simulations are powerful tools for studying cell membranes and their interactions with proteins and other molecules. However, these processes occur on time scales determined by the diffusion rate of phospholipids, which are challenging to achieve in all-atom models. Here, we present a new all-atom model that accelerates lipid diffusion by splitting phospholipid molecules into head and tail groups.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Institute of Chemistry, The Fritz Haber Research Center, and The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Edmond J. Safra Campus, The Hebrew University, Jerusalem 9190401, Israel. Electronic address:
Cyclodextrins are widely used pharmaceutical excipients known to increase the solubility of drug compounds through formation of inclusion complexes. A prominent limitation of common cyclodextrins is their own scarce solubility in water, which renders them unsuitable for many drug formulations. Cyclodextrin solubility can be enhanced in appropriate media such as Deep Eutectic Solvents (DESs).
View Article and Find Full Text PDFToxicology
January 2025
School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; Advanced Research Promotion Center, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan. Electronic address:
Hexafluoropropylene oxide dimer acid (HFPO-DA), which belongs to the class of perfluoroalkyl ether carboxylic acid (PFECA), is a new alternative to perfluorooctanoic acid (PFOA). However, whether HFPO-DA is a safer alternative to PFOA in neonates remains unclear. In this study, we evaluated neonatal hepatic toxicity on postnatal days 9-10 by orally exposing pregnant CD-1 mice to 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!