RNA turnover is an essential element of cellular homeostasis and response to environmental change. Whether the ribonucleases that mediate RNA turnover can respond to cellular metabolic status is an unresolved question. Here we present evidence that the Krebs cycle metabolite citrate affects the activity of Escherichia coli polynucleotide phosphorylase (PNPase) and, conversely, that cellular metabolism is affected widely by PNPase activity. An E. coli strain that requires PNPase for viability has suppressed growth in the presence of increased citrate concentration. Transcriptome analysis reveals a PNPase-mediated response to citrate, and PNPase deletion broadly impacts on the metabolome. In vitro, citrate directly binds and modulates PNPase activity, as predicted by crystallographic data. Binding of metal-chelated citrate in the active site at physiological concentrations appears to inhibit enzyme activity. However, metal-free citrate is bound at a vestigial active site, where it stimulates PNPase activity. Mutagenesis data confirmed a potential role of this vestigial site as an allosteric binding pocket that recognizes metal-free citrate. Collectively, these findings suggest that RNA degradative pathways communicate with central metabolism. This communication appears to be part of a feedback network that may contribute to global regulation of metabolism and cellular energy efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3077632PMC
http://dx.doi.org/10.1074/jbc.M110.200741DOI Listing

Publication Analysis

Top Keywords

pnpase activity
12
polynucleotide phosphorylase
8
escherichia coli
8
rna turnover
8
active site
8
metal-free citrate
8
citrate
7
activity
6
pnpase
6
phosphorylase activity
4

Similar Publications

Article Synopsis
  • RNA oxidation, particularly the formation of 8-oxo-7,8-dihydroguanosine (8-oxo-rG), serves as a key indicator of oxidative stress in cells.
  • Polynucleotide phosphorylase (PNPase) helps protect cells from oxidative stress by recognizing and degrading RNA containing 8-oxo-rG, but how 8-oxo-rG affects this process was previously unclear.
  • This study finds that 8-oxo-rG causes PNPase to stall during RNA degradation, particularly due to a crucial residue (Arg399), influencing bacterial survival under stress conditions.
View Article and Find Full Text PDF

8-Aminopurines: A Promising New Direction for Purine-Based Therapeutics.

Hypertension

December 2024

Department of Pharmacology and Chemical Biology (E.K.J., S.P.T., Y.C., L.A.B.), University of Pittsburgh School of Medicine, Pittsburgh, PA.

Research in purinergic pharmacology has yielded major advances in cardiovascular therapeutics such as adenosine for terminating atrioventricular reentrant tachycardia, regadenoson for pharmacological ischemic stress testing, and selective P2Y receptor antagonists for prevention of stroke and myocardial infarction. Mechanistically, these FDA-approved purine-based therapeutics activate or antagonize receptors having endogenous ligands containing the purine nucleobase adenine. Recent discoveries suggest a novel direction for purine-based therapeutics.

View Article and Find Full Text PDF

Mitochondria facilitate neuronal differentiation by metabolising nuclear-encoded RNA.

Cell Commun Signal

September 2024

IDR/WSLHD Research and Education Network, Sydney, NSW, 2145, Australia.

Mitochondrial activity directs neuronal differentiation dynamics during brain development. In this context, the long-established metabolic coupling of mitochondria and the eukaryotic host falls short of a satisfactory mechanistic explanation, hinting at an undisclosed facet of mitochondrial function. Here, we reveal an RNA-based inter-organellar communication mode that complements metabolic coupling of host-mitochondria and underpins neuronal differentiation.

View Article and Find Full Text PDF

RNase-mediated reprogramming of Yersinia virulence.

PLoS Pathog

August 2024

Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.

RNA degradation is an essential process that allows bacteria to regulate gene expression and has emerged as an important mechanism for controlling virulence. However, the individual contributions of RNases in this process are mostly unknown. Here, we tested the influence of 11 potential RNases in the intestinal pathogen Yersinia pseudotuberculosis on the expression of its type III secretion system (T3SS) and associated effectors (Yops) that are encoded on the Yersinia virulence plasmid.

View Article and Find Full Text PDF

Identification of Ribonuclease Inhibitors for the Control of Pathogenic Bacteria.

Int J Mol Sci

July 2024

Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.

Bacteria are known to be constantly adapting to become resistant to antibiotics. Currently, efficient antibacterial compounds are still available; however, it is only a matter of time until these compounds also become inefficient. Ribonucleases are the enzymes responsible for the maturation and degradation of RNA molecules, and many of them are essential for microbial survival.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!