The objective of the present study was to determine whether a mitochondria-targeted vitamin E derivative (MitoVit E) would affect certain mitochondrial parameters, as well as systemic oxidative stress. A total of sixty-four mice were fed a high-fat (HF) diet for 5 weeks. They were then switched to either a low-fat (LF) or a medium-fat (MF) diet, and administered orally with MitoVit E (40 mg MitoVit E/kg body weight) or drug vehicle (10 % (v/v) ethanol in 0·9 % (w/v) NaCl solution), every other day for 5 weeks. Mitochondrial ATP and H(2)O(2) production rates in both the liver and the gastrocnemius were not affected by MitoVit E administration in either LF or MF diet-fed mice. However, the number and average size of the subsarcolemmal mitochondria, but not the intermyofibrillar mitochondria, from the soleus muscle were significantly higher in the MF group receiving MitoVit E (MF-E) than in the MF group receiving vehicle only (MF-C). After the mice were switched from the HF diet to the four dietary treatments (LF-C, LF-E, MF-C and MF-E), the decrease in urinary isoprostane concentration was significantly greater in the LF-E group than in the other three groups during the whole study (weeks 6-10). In addition, MitoVit E significantly increased plasma superoxide dismutase (SOD) activity in the MF diet-fed group without affecting plasma glutathione peroxidase activity or H(2)O(2) levels. Overall, these data suggest that MitoVit E affects subsarcolemmal mitochondrial density and systemic oxidative stress parameters such as plasma SOD activity and urinary isoprostane concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114510005830DOI Listing

Publication Analysis

Top Keywords

systemic oxidative
12
oxidative stress
12
mitochondria-targeted vitamin
8
vitamin derivative
8
group receiving
8
urinary isoprostane
8
isoprostane concentration
8
sod activity
8
mitovit
7
mitochondrial
4

Similar Publications

Burn-induced mitochondrial dysfunction in hepatocytes: The role of methylation-controlled J protein silencing.

J Trauma Acute Care Surg

January 2025

From the Division of Gastrointestinal, Trauma, and Endocrine Surgery, Department of Surgery (A.P., K.M.M., A.C.Q., E.J.K., J.-P.I.), Division of Burn Research (E.J.K.), and Division of Alcohol Research (E.J.K.), Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado.

Background: Burn injuries trigger a systemic hyperinflammatory response, leading to multiple organ dysfunction, including significant hepatic damage. The liver plays a crucial role in regulating immune responses and metabolism after burn injuries, making it critical to develop strategies to mitigate hepatic impairment. This study investigates the role of methylation-controlled J protein (MCJ), an inner mitochondrial protein that represses complex I in burn-induced oxidative stress and mitochondrial dysfunction, using an in vitro Alpha Mouse Liver 12 cell model.

View Article and Find Full Text PDF

Unraveling metabolic signatures in SARS-CoV-2 variant infections using multiomics analysis.

Front Immunol

December 2024

Integrated Metabolomics Research Group, Metropolitan Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea.

Introduction: The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, notably delta and omicron, has significantly accelerated the global pandemic, worsening conditions worldwide. However, there is a lack of research concerning the molecular mechanisms related to immune responses and metabolism induced by these variants.

Methods: Here, metabolomics combined with transcriptomics was performed to elucidate the immunometabolic changes in the lung of hamsters infected with delta and omicron variants.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is well known among the elderly and has a profound impact on both patients and their families. Increasing research indicates that AD is a systemic disease, with a strong connection to cardiovascular disease. They share common genetic factors, such as mutations in the presenilin (PS1 and PS2) and the apolipoprotein E (APOE) genes.

View Article and Find Full Text PDF

Nitroxide radical contrast agents for safe magnetic resonance imaging: progress, challenges, and perspectives.

Mater Horiz

January 2025

State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.

Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents.

View Article and Find Full Text PDF

Advanced spectroscopic evidence for the sequestration of heavy metals via repetitive in situ synthesis of Fe oxide.

J Hazard Mater

January 2025

Department of Civil and Environmental Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

The in situ synthesis of Fe oxide is an established method for stabilizing metals and metalloids (Me) in contaminated soils. Nevertheless, the potential for enhanced Me sequestration through repeated Fe oxide application and the fundamental mechanisms of this process yet to be systemically investigated. In this study, the means by which repetitive Fe oxide synthesis enhances the immobilization of Cd, Zn, and As was investigated using batch experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!