Conifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (+)-3-carene synthase (PsTPS-3car) genes (82-95% amino acid sequence identity). Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) that is expressed in both genotypes, one gene (PsTPS-3car2) that is expressed only in resistant trees, and one gene (PsTPS-3car3) that is expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring confirmed this pattern of differential expression of members of the PsTPS-3car family at the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3 as a factor contributing to the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by copy number variation of PsTPS-3car genes, variation of gene and protein expression, and variation in catalytic efficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2010.04478.x | DOI Listing |
Microorganisms
November 2024
Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile.
The wood decay fungi and severely threaten the worldwide cultivation of sweet cherry trees ( L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback.
View Article and Find Full Text PDFInsects
December 2024
Grupo Universitario de Investigación en Ingeniería y Agricultura Sostenible (GUIIAS), Instituto de Medio Ambiente Recursos Naturales y Biodiversidad, Escuela de Ingeniería Agraria y Forestal, Universidad de León, Avenida de Portugal 41, 24009 León, Spain.
The poplar bark beetle (Coleoptera: Scolytidae) is a key pest of poplar trees (Malpighiales: Salicaceae, genus ) across northern Spain. However, among the more than 200 poplar clones available on the market, the clone USA 184-411 has the highest susceptibility to attacks. We tested the hypothesis that compounds released by the most susceptible poplar clone chemically mediate behavior.
View Article and Find Full Text PDFSci Rep
January 2025
Medical Physics, Clinic for Radiology, University of Münster and University Hospital of Münster, 48149, Münster, Albert-Schweitzer-Campus 1, Building A1, Germany.
This study aims to improve our understanding of acute ischemic stroke clot imaging by integrating CT attenuation information with MRI susceptibility signal of thrombi. For this proof-of-principle experimental study, fifty-seven clot analogs were produced using ovine venous blood with a broad histological spectrum. Each clot analog was analyzed to determine its RBC content and chemical composition, including water, Fe III, sodium, pH, and pO2.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China.
Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Plant Biology, Foran Hall, Rutgers University, New Brunswick, NJ, United States.
The stem canker disease eastern filbert blight (EFB), caused by , is a major impediment of European hazelnut () production in the United States. While most European hazelnut cultivars are highly susceptible to the pathogen, which remains confined to North America, EFB resistant and tolerant genotypes occur in the gene pool at low frequency. At Rutgers University, New Brunswick, NJ, USA, 5,226 trees were grown from open pollinated seeds collected from Russia, Crimea, Poland, Turkey, Estonia, Latvia, Lithuania, Moldova, Azerbaijan, Italy, and the Republic of Georgia between 2002 to 2010.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!