A computational model of thalamocortical dysrhythmia.

Eur J Neurosci

Institute for Neuroinformatics, Uni/ETH Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.

Published: April 2011

Functional stereotactic lesions in the central lateral nucleus of the medial thalamus have proved to be an effective treatment of neurogenic pain and other neurological disorders associated with thalamocortical dysrhythmia. The mechanisms underlying patient recovery after surgery are currently being explored using quantitative electroencephalography. Here we test the hypothesis that the particular role played by the non-specific medial thalamic nuclei in thalamocortical dysrhythmia is based on the divergent connectivity between these non-specific and reticular nuclei. We built a spiking computer model of the human thalamocortical system consisting of specific, non-specific and reticular thalamic nuclei. In our simulations of the thalamocortical system, deafferentation of peripheral thalamic afferents leads to hyperpolarization and subsequent bursting in the reticular nucleus. This provides strong inhibitory feedback to both the specific and the non-specific thalamic nuclei and initiates a feedback cycle of thalamic bursts in the theta frequency range. The divergent connections between the reticular and non-specific thalamic nuclei provide synchronization of the oscillating circuits. Functional silencing of the non-specific model nucleus limits reverberation and rescues the system from these oscillations. The same effect could be achieved by increasing the input to the non-specific nucleus from cortical areas. The model predicts that the invasiveness of functional neurosurgery can be reduced by targeting only deafferented areas in the medial nuclei as these are the key areas for generation and maintenance of pathological rhythms.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2010.07588.xDOI Listing

Publication Analysis

Top Keywords

thalamic nuclei
16
thalamocortical dysrhythmia
12
non-specific reticular
8
thalamocortical system
8
specific non-specific
8
non-specific thalamic
8
non-specific
7
thalamic
6
nuclei
6
thalamocortical
5

Similar Publications

Neuroimage Signature in Post-Stroke Pain: A Systematic Review.

Curr Pain Headache Rep

January 2025

Faculty of Health Sciences, Universidade da Beira Interior, Av. Infante D. Henrique, Covilhã, 6200-506, Portugal.

Introduction: Central Post-Stroke Pain (CPSP) is a debilitating condition with a significant prevalence in stroke survivors. Set apart by its refractory to treatment neuropathic pain, it appears to arise from lesions in the spino-thalamo-cortical pathways, particularly in the thalamus. Despite advances in neuroimaging techniques, the pathophysiology of CPSP remains poorly understood, with limited diagnostic criteria and therapeutic approaches.

View Article and Find Full Text PDF

Unlabelled: Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes.

View Article and Find Full Text PDF

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

The substantia nigra pars compacta (SNc), one of the main dopaminergic nuclei of the brain, exerts a regulatory function on the basal ganglia circuitry via the nigro-striatal pathway but its possible dopaminergic innervation of the thalamus has been only investigated in non-human primates. The impossibility of tract-tracing studies in humans has boosted advanced MRI techniques and multi-shell high-angular resolution diffusion MRI (MS-HARDI) has promised to shed more light on the structural connectivity of subcortical structures. Here, we estimated the possible dopaminergic innervation of the human thalamus via an MS-HARDI tractography of the SNc in healthy human young adults.

View Article and Find Full Text PDF

Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!