Syntheses of organic molecule-DNA hybrid structures.

ACS Nano

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

Published: March 2011

Investigation of robust and efficient pathways to build DNA-organic molecule hybrid structures is fundamentally important to realize controlled placement of single molecules for potential applications, such as single-molecule electronic devices. Herein, we report a systematic investigation of synthetic processes for preparing organic molecule-DNA building blocks and their subsequent elongation to generate precise micrometer-sized structures. Specifically, optimal cross-coupling routes were identified to enable chemical linkages between three different organic molecules, namely, polyethylene glycol (PEG), poly(p-phenylene ethynylene) (PPE), and benzenetricarboxylate, with single-stranded (ss) DNA. The resulting DNA-organic molecule hybrid building blocks were purified and characterized by both denaturing gel electrophoresis and electrospray ionization mass spectrometry (ESI-MS). The building blocks were subsequently elongated through both the DNA hybridization and ligation processes to prepare micrometer-sized double-stranded (ds) DNA-organic molecule hybrid structures. The described synthetic procedures should facilitate future syntheses of various hybrid DNA-based organic molecular structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn1032455DOI Listing

Publication Analysis

Top Keywords

hybrid structures
12
dna-organic molecule
12
molecule hybrid
12
building blocks
12
organic molecule-dna
8
hybrid
5
structures
5
syntheses organic
4
molecule-dna hybrid
4
structures investigation
4

Similar Publications

Thioredoxin z (TRX z) plays a significant role in chloroplast development by regulating the transcription of chloroplast genes. In this study, we identified a pentatricopeptide repeat (PPR) protein, rice albino seedling-lethal (RAS), that interacts with OsTRX z. This interaction was initially discovered by using a yeast two-hybrid (Y2H) screening technique and was further validated through Y2H and bimolecular fluorescence complementation (BiFC) experiments.

View Article and Find Full Text PDF

The genome composition of intermediate wheatgrass (IWG; (Host) Barkworth and D.R. Dewey; 2n = 6x = 42) is complex and remains to be a subject of ongoing investigation.

View Article and Find Full Text PDF

Background/objectives: This protocol describes a study to investigate the feasibility and preliminary efficacy of a novel Teaching Kitchen Multisite Trial (TK-MT) for adults with cardiometabolic abnormalities. The TK-MT protocol describes a hybrid lifestyle intervention combining in-person and virtual instruction in culinary skills, nutrition education, movement, and mindfulness with community support and behavior change strategies. This 18-month-long randomized controlled trial aims to evaluate the feasibility of implementing a 12-month, 24 class program, assess preliminary study efficacy, and identify barriers and facilitators to implementation.

View Article and Find Full Text PDF

CAM/CAD composites are widely used as dental restoration materials due to their resistivity to wear. The purpose of this study was to determine the effect of human gingival fibroblast cells on three different computer-aided design/computer-aided manufacturing (CAD/CAM) hybrid materials with resin-based composites (RBC) and to assess their stability following cell growth. The CAM/CAD dental materials were investigated in different conditions as follows: (i) cells (human gingival fibroblasts, HFIB-Gs) incubated over the material for each sample, denoted as A; (ii) reference, the raw material, denoted as B; and (iii) materials incubated in DMEM medium, denoted as C.

View Article and Find Full Text PDF

Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties.

Polymers (Basel)

January 2025

Department of Material Science and Manufacturing Technology, Faculty of Engineering, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic.

This article is a numerical and experimental study of the mechanical properties of different glass, flax and hybrid composites. By utilizing hybrid composites consisting of natural fibers, the aim is to eventually reduce the percentage usage of synthetic or man-made fibers in composites and obtain similar levels of mechanical properties that are offered by composites using synthetic fibers. This in turn would lead to greener composites being utilized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!