Objective: To study the dexamethasone pharmacokinetics of human inner ear perilymph under different drug administration using computer simulations.
Method: The dexamethasone pharmacokinetics in guinea pigs inner ear perilymph under an intratympanic application with high-performance liquid chromatography. Dexamethasone pharmacokinetics in the guinea pigs cochlear fluid were simulated with a computer model, the Washington University Cochlear Fluids Simulator, version 1.6 and the best Simulations parameters to the experimental data could be obtain. With best Simulations parameters based on the experimental data, seven kinds application protocols were designed for human inner ear perilymph.
Result: After an intratympanic application dose of 0.5% dexamethasone 150 ml in guinea pigs, the T(1/2K) was (2.918 +/- 0.089) h, and Cmax was (231.25 +/- 6.89) microg/L. The best Simulations parameters were that concentration of the dexamethasone 21-Phosphate disodium salt was 0.5% and the formula weight was 516, as well as drug diffusion coefficient was 0.6939 x 10(-5) cm2/s and round window permeability was 2.2 x 10(-11) cm/s while drug clearance half time was 175 minutes and scala tympaniscala vestibuli communication was 45 minutes. After an intratympanic application dose of 0.5% dexamethasone 500 mL, which the applied drug stayed in contact with the round window membrane for 15, 30, 60 and 120 minutes, the Cmax was 32.8, 64.3, 122.6 and 203.3 microg/L and the AUC was 116.5, 229.1, 423.6 and 759.2 microg/(h x L), respectively. After an intratympanic application dose of 0.5%, 1%, 2% and 4% dexamethasone 500 ml, which the applied drug stayed in contact with the round window membrane for 30 minutes respectively, the Cmax was 64.3, 127.3, 255.4 and 575.6 microg/L respectively and the AUC was 229.1, 462.8, 920.59 and 1525.2 microg/(h x L), respectively.
Conclusion: The dexamethasone pharmacokinetics in human inner ear perilymph by computer simulations was reported. As the time contact with the round window membrane increased, the inner ear perilymph concentration of dexamethasone increased. As the concentration of dexamethasone increased, the inner ear perilymph concentration of drug increased.
Download full-text PDF |
Source |
---|
Otol Neurotol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University Hospital Bern and University of Bern, Bern, Switzerland.
Objective: We aimed to investigate the effect of adding "rapid decelerations" and "vibrations" during a SemontPLUS maneuver on the dynamics of the inner ear and the success rate of canalolithiasis repositioning.
Methods: We used a previously described upscaled (5×) in vitro model of the posterior semicircular canal of the inner ear to analyze the trajectory of a single and clumped surrogate otolith particle (metallic sphere) during a SemontPLUS maneuver (-60 degrees below earth horizontal) on a repositioning chair (TRV). We compared the angular displacement of these particles with and without the application of "vibrations" or "rapid decelerations" using TRV.
Environ Sci Technol
January 2025
State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
The effects of particulate matter (PMs) from different cities on the nervous system remain unclear. In this study, aqueous solutions of 0.45 μm membrane-filtered PM from 31 major Chinese cities were intravenously administered to rats.
View Article and Find Full Text PDFJ Comput Assist Tomogr
January 2025
Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL.
Treacher Collins syndrome (TCS) is an uncommon congenital disorder predominantly involving craniofacial, orbital, and otological structures. The various ear malformations seen in 9 patients with TCS are described. TCS predominantly affects the external and middle ear structures, with inner ear structures being relatively spared, not unexpected given the dual embryological origin of the human ear.
View Article and Find Full Text PDFHear Res
January 2025
CHU Lille, Department of Otology and Neurotology, F-59000 Lille, France; Univ. Lille, France; Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
Objective: The aim of this study is to detail and evaluate the surgical procedure for perilymph sampling from the cochlear apex in the Mongolian gerbil.
Design: Perilymph sampling from the cochlear apex was performed one to three time in 12 male gerbils aged 8 to 12 months via the submandibular route. 11 of them were previously implanted with intracochlear implants loaded with dexamethasone and placed in the scala tympani, the 12th was used to collect control samples.
J Acoust Soc Am
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
The otic capsule and surrounding temporal bone exhibit complex 3D motion influenced by frequency and location of the bone conduction stimulus. The resultant correlation with the intracochlear pressure is not sufficiently understood, thus is the focus of this study, both experimentally and numerically. Experiments were conducted on six temporal bones from three cadaver heads, with BC hearing aid stimulation applied at the mastoid and classical BAHA locations across 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!