Palladium-catalyzed coupling reactions of tetrafluoroethylene with arylzinc compounds.

J Am Chem Soc

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.

Published: March 2011

Organofluorine compounds are widely used in all aspects of the chemical industry. Although tetrafluoroethylene (TFE) is an example of an economical bulk organofluorine feedstock, the use of TFE is mostly limited to the production of poly(tetrafluoroethylene) and copolymers with other alkenes. Furthermore, no catalytic transformation of TFE that involves carbon-fluorine bond activation has been reported to date. We herein report the first example of a palladium-catalyzed coupling reaction of TFE with arylzinc reagents in the presence of lithium iodide, giving α,β,β-trifluorostyrene derivatives in excellent yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja109911pDOI Listing

Publication Analysis

Top Keywords

palladium-catalyzed coupling
8
coupling reactions
4
reactions tetrafluoroethylene
4
tetrafluoroethylene arylzinc
4
arylzinc compounds
4
compounds organofluorine
4
organofluorine compounds
4
compounds aspects
4
aspects chemical
4
chemical industry
4

Similar Publications

Heteroaryl-Fused Triazapentalenes: Synthesis and Aggregation-Induced Emission.

Molecules

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.

A pyridine-fused triazapentalene shows weak fluorescence in solution and is readily accessible via nitrene-mediated cyclization. In this study, a modified Cadogan reaction was used to synthesize . Palladium-catalyzed reactions have been used as post-functionalization methods.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

The enantioselective synthesis of P(V)-stereogenic compounds has emerged as an interesting research topic primarily due to their significant biological activity and broad application prospects. Herein, we disclose a method for the construction of P(V)-stereogenic compounds from prochiral phosphinamides and aryl iodides via palladium- and chiral norbornene-catalyzed desymmetric annulation. The P(V)-stereogenic compounds were formed with a broad scope with excellent enantiomeric excesses.

View Article and Find Full Text PDF

We report herein a palladium-catalyzed distal alkylation of silyldienol and silyltrienol ethers of enones through coupling with activated halides to achieve new - and -alkylated motifs. Additionally, by employing propargyl bromides, synthetically useful linear allenes along with functionalized enones have been synthesized. Low-catalyst loading, and late-stage transformations of pharmaceutically relevant molecules further showcase the importance of the present protocol.

View Article and Find Full Text PDF

Catalytic asymmetric C-N cross-coupling towards boron-stereogenic 3-amino-BODIPYs.

Nat Commun

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.

3-Amino boron dipyrromethenes (BODIPYs) are a versatile class of fluorophores widely utilized in live cell imaging, photodynamic therapy, and fluorescent materials science. Despite the growing demand for optically active BODIPYs, the synthesis of chiral 3-amino-BODIPYs, particularly the catalytic asymmetric version, remains a challenge. Herein, we report the synthesis of boron-stereogenic 3-amino-BODIPYs via a palladium-catalyzed desymmetric C-N cross-coupling of prochiral 3,5-dihalogen-BODIPYs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!