A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a new spatial analysis tool in mental health: identification of highly autocorrelated areas (hot-spots) of schizophrenia using a Multiobjective Evolutionary Algorithm model (MOEA/HS). | LitMetric

Aims: This study had two objectives: (1) to design and develop a computer-based tool, called Multi-Objective Evolutionary Algorithm/Hot-Spots (MOEA/HS), to identify and geographically locate highly autocorrelated zones or hot-spots and which merges different methods, and (2) to carry out a demonstration study in a geographical area where previous information about the distribution of schizophrenia prevalence is available and which can therefore be compared.

Methods: Local Indicators of Spatial Aggregation (LISA) models as well as the Bayesian Conditional Autoregressive Model (CAR) were used as objectives in a multicriteria framework when highly autocorrelated zones (hot-spots) need to be identified and geographically located. A Multi-Objective Evolutionary Algorithm (MOEA) model was designed and used to identify highly autocorrelated areas of the prevalence of schizophrenia in Andalusia. Hot-spots were statistically identified using exponential-based QQ-Plots (statistics of extremes).

Results: Efficient solutions (Pareto set) from MOEA/HS were analysed statistically and one main hot-spot was identified and spatially located. Our model can be used to identify and locate geographical hot-spots of schizophrenia prevalence in a large and complicated region.

Conclusions: MOEA/HS enables a compromise to be achieved between different econometric methods by highlighting very special zones in complex areas where schizophrenia shows a high autocorrelation.

Download full-text PDF

Source

Publication Analysis

Top Keywords

highly autocorrelated
16
autocorrelated areas
8
hot-spots schizophrenia
8
evolutionary algorithm
8
multi-objective evolutionary
8
autocorrelated zones
8
zones hot-spots
8
schizophrenia prevalence
8
hot-spots
5
schizophrenia
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!