In an attempt to elucidate the damage in high transmission thin films on LiNbO3 crystal in optical parametric oscillator, the authors employed XRD spectrometry to investigate the spectrum of laser-induced damage in thin film as well as the morphology of the damage. The authors observed that the damage of thin film was characterized by the depressions/craters in the surface of the films, which were surrounded by a deposition layer with the deceasing thickness from the center of the craters. The XRD measurements indicate that the film was crystallized. The authors analyzed the causes of morphologies and the mechanism of crystallization with the aid of the model for impurity-induced damage in thin solid films. The crystallization was due to the solidification of liquid and gaseous mixtures that result from the strong absorbing to the incident laser. The crater was generated because the mixtures were ejected under the extensive pressure of the laser plasma shock wave. During the process that the mixtures deposit around the craters, the density of the mixtures will decrease and crystallization takes place. As a result, the color of the deposition layer becomes lighter from inside to outside, and the crystallization of the thin film materials was observed by XRD spectrometry.

Download full-text PDF

Source

Publication Analysis

Top Keywords

damage thin
12
thin film
12
thin films
8
films linbo3
8
linbo3 crystal
8
crystal optical
8
optical parametric
8
parametric oscillator
8
xrd spectrometry
8
deposition layer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!