A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Classification of wetlands in multispectral remote sensing image based on HPSO and FCM]. | LitMetric

[Classification of wetlands in multispectral remote sensing image based on HPSO and FCM].

Guang Pu Xue Yu Guang Pu Fen Xi

State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China.

Published: December 2010

The present paper analyzed the characteristics of particle swarm optimization(PSO), hybrid particle swarm optimization (HPSO) and fuzzy C-means (FCM), imported FCM into HPSO, and improved the HPSO-FCM arithmetic. An HPSO-FCM program was developed using Fortran language in MATLAB. Besides, a synthesis image combined with the former three principal components was obtained through band stacking and principal component analysis, taking the multispectral visible image of HJ-1 Satellite shot in June 2009 and the ASAR radar image of ENVISAT as basic data. And the paper has done a wetlands classification experiment in the synthesis image of the East Dongting Lake of Hunan province, using HPSO-FCM arithmetic and ISODATA separately. The results indicated: (1) The arithmetic which imported crossover operator of genetic algorithms and FCM into HPSO had better search speed and convergent precision, and it could search and optimize the best cluster center more efficiently. (2) The HPSO-FCM arithmetic has better precision in wetlands classification in multispectral remote sensing image, and it is an effective method in remote sensing image classification.

Download full-text PDF

Source

Publication Analysis

Top Keywords

remote sensing
12
sensing image
12
hpso-fcm arithmetic
12
multispectral remote
8
particle swarm
8
fcm hpso
8
synthesis image
8
wetlands classification
8
image
7
[classification wetlands
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!