A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

[Improvement of the recognition probability about camouflage target based on BP neural network]. | LitMetric

[Improvement of the recognition probability about camouflage target based on BP neural network].

Guang Pu Xue Yu Guang Pu Fen Xi

Key Laboratory of Instrument Science & Dynamic Measurement of Ministry of Education, State Key Laboratory of Science and Technology on Electronic Test and Measurement, North University of China, Taiyuan 030051, China.

Published: December 2010

Using static Michelson interferometer to get the spectrum information of measurement targets for spectrum identification, under the condition that the interference length is constant, the system can be optimized by BP neural network algorithm for the mixed spectral separation process. Thereby it can realize improving the recognition probability of camouflage target. Collecting the spectrum information in field of view (FOV) by the interferometer and linear array CCD detector, composing the set of mixed spectrum data, with known absorption spectrum of the material as a hidden layer of rules, it used BP neural network to separate the mixed spectrum data. Experiment with different distances, different combinations of mixed background spectrum as the initial data, using steel target (size: 1.5 m x 1.5 m) made of four kinds, the recognition probability of non-camouflage target is about 90% by BP neural network algorithm or the traditional algorithm, while the recognition probability of camouflage target is 75.5% with BP, better than 31.7% with the traditional, so it can effectively improve the recognition probability of camouflage target.

Download full-text PDF

Source

Publication Analysis

Top Keywords

recognition probability
20
probability camouflage
16
camouflage target
16
neural network
12
network algorithm
8
mixed spectrum
8
spectrum data
8
spectrum
7
target
6
probability
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!