3.3'-Diethylthiatricarbocyanine iodide (DTTC) dye is an important infrared Raman probe molecule, and has received great attention in the past decades due to their potential applications in Raman imaging, single cell detection, and tumor marker. In the present work, ordinary Raman, surface enhanced Raman scattering (SERS), and theoretical Raman spectra were given to estimate the Raman spectrum of DTTC suspension. More specifically, the original gold nanospheres (60-nm diameter) and gold nanorods (NRs) were encoded with DTTC and stabilized with a layer of thiol-polyethylene glycol (PEG) as Raman reporter, and SERS data were obtained from the samples. Density functional theory (DFT) calculation was applied to calculate the optimized Raman spectra of DTTC water solvent on a B3LYP/6-31G level. Subsequently, the obtained experimental spectra from the DTTC were carefully compared with the theoretically calculated spectra. From the spectra comparation, good agreements were obtained between the theoretical and experimental results. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical applications.
Download full-text PDF |
Source |
---|
Angew Chem Int Ed Engl
January 2025
Universidad Complutense de Madrid Facultad de Ciencias Quimicas, Inorganic Chemistry Department, 28034, Madrid, SPAIN.
Achieving high battery performance from low-cost, easily synthesisable electrode materials is crucial for advancing energy storage technologies. Metal organic frameworks (MOFs) combining inexpensive transition metals and organic ligands are promising candidates for high-capacity cathodes. Iron-chloranilate-water frameworks are herein reported to be produced in aqueous media under mild conditions.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India.
Tuberculosis (TB) continues to be a major cause of death worldwide despite having an effective combinatorial therapeutic regimen and vaccine. Being one of the most successful human pathogens, retains the ability to adapt to diverse intracellular and extracellular environments encountered by it during infection, persistence, and transmission. Designing and developing new therapeutic strategies to counter the emergence of multidrug-resistant and extensively drug-resistant TB remains a major task.
View Article and Find Full Text PDFObjectives: To evaluate the benefit of neoadjuvant chemotherapy (NAC) for patients with high-risk upper tract urothelial carcinoma (UTUC) using a large, well-curated multi-institutional database.
Patients And Methods: This study was a multi-institutional retrospective analysis conducted by the UTUC Collaborative Network (UCAN), combining data from 2276 patients with UTUC who underwent radical nephroureterectomy at seven high-volume tertiary care centres in the United States. The UCAN data were analysed to evaluate the impact of response to NAC on survival outcomes in patients with UTUC.
J Biophotonics
January 2025
Department of Electronic Engineering, Maynooth University, Kildare, Ireland.
Broadband CARS is a coherent Raman scattering technique that provides access to the full biological vibrational spectrum within milliseconds, facilitating the recording of widefield hyperspectral Raman images. In this work, BCARS hyperspectral images of unstained cells from two different cell lines of immune lineage (T cell [Jurkat] and pDCs [CAL-1]) were recorded and analyzed using multivariate statistical algorithms in order to determine the spectral differences between the cells. A classifier was trained which could distinguish the known cells with a 97% out-of-bag accuracy.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!