We constructed a supramolecular system on a liposomal membrane that is capable of activating an enzyme via DNA hybridization. The design of the system was inspired by natural signal transduction systems, in which enzymes amplify external signals to control signal transduction pathways. The liposomal membrane, providing a platform for the system, was prepared by the self-assembly of an oligonucleotide lipid, a phospholipid and a cationic synthetic lipid. The enzyme was immobilized on the liposomal surface through electrostatic interactions. Selective recognition of DNA signals was achieved by hybridizing the DNA signals with the oligonucleotide lipid embedded in the liposome. The hybridized DNA signal was sent to the enzyme by a copper ion acting as a mediator species. The enzyme then amplified the event by the catalytic reaction to generate the output signal. In addition, our system demonstrated potential for the discrimination of single nucleotide polymorphisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c0ob00918k | DOI Listing |
J Biomol NMR
January 2025
Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert- Rössle-Straße 10, 13125, Berlin, Germany.
Chemical shift assignments of large membrane proteins by solid-state NMR experiments are challenging. Recent advancements in sensitivity-enhanced pulse sequences, have made it feasible to acquire H-detected 4D spectra of these challenging protein samples within reasonable timeframes. However, obtaining unambiguous assignments remains difficult without access to side-chain chemical shifts.
View Article and Find Full Text PDFLangmuir
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.
View Article and Find Full Text PDFJ Chromatogr A
January 2025
Department of Chemistry, Faculty of Science, POB 55 (A.I. Virtasen aukio 1), 00014 University of Helsinki, Helsinki, Finland. Electronic address:
This study was conducted to investigate possible differences in the interactions of some selected steroids based on their distribution coefficients with cholesterol- or ergosterol-rich liposomes. Structurally cholesterol and ergosterol have very close resemblance to each other and generally it is thought that they behave in a similar manner. In this work we will show that this is not the case.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt. Electronic address:
Alzheimer's disease (AD) is popularly believed to be triggered by the aggregation of amyloid beta 1-42 (Aβ - 42) peptides, eventually leading to neurodegeneration. Our study delves into the influential role played by Green Iron Oxide Nanoparticles (GIONP). GIONP are typically synthesized using a green chemistry approach, imposing curcumin as a biocompatible reducing and capping agent, leveraging its inherent antioxidant, anti-inflammatory, and neuroprotective attributes.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Radiology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, China.
Pyroptosis is a key mode of programmed cell death during the early stages following acute myocardial infarction (AMI), driving immune-inflammatory responses. Cardiac resident macrophages (CRMs) are the primary mediators of cardiac immunity, and they serve a dual role through their shaping of both myocardial injury and post-AMI myocardial repair. To appropriately regulate AMI-associated inflammation, HM4oRL is herein designed, an innovative bifunctional therapeutic nanoplatform capable of inhibiting cardiomyocyte pyroptosis while reprogramming inflammatory signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!