In this study, we have evaluated our recently developed polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay for the molecular subtyping of Shiga toxin-producing Escherichia coli (STEC). A total of 200 STEC strains including O157 (n=100), O26 (n=50), O111 (n=10), and non-O26/O111/O157 (n=40) serogroups isolated during 2005-2006 in Japan, which were identified to be clonally different by pulsed-field gel electrophoresis (PFGE) were further analyzed by the PCR-RFLP assay in comparison to PFGE. Ninety-five of O157, 48 of O26, five of O111 and 19 of non-O26/O111/O157 STEC strains yielded one to three amplicons ranging from 6.0 to 15.5 kb in size by the specific primer set targeting region V which is located in the upstream of stx genes. These strains were classified into 41 (O157), 8 (O26), 4 (O111) and 17 (non-O26/O111/O157) groups based on the RFLP patterns obtained by subsequent restriction digestion, respectively. Although the discriminatory power of PCR-RFLP assay was somewhat less than that of PFGE, it is more convenient for molecular subtyping of STEC strains especially for O157, the most important serogroup implicated in human diseases, as well as to identify the outbreak-associated isolates because of its simplicity, rapidity, ease and good reproducibility.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.11-0008DOI Listing

Publication Analysis

Top Keywords

pcr-rflp assay
16
stec strains
12
fragment length
8
length polymorphism
8
polymorphism pcr-rflp
8
assay molecular
8
shiga toxin-producing
8
toxin-producing escherichia
8
escherichia coli
8
molecular subtyping
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!