TRPV3 is a thermosensitive channel that is robustly expressed in skin keratinocytes and activated by innocuous thermal heating, membrane depolarization, and chemical agonists such as 2-aminoethyoxy diphenylborinate, carvacrol, and camphor. TRPV3 modulates sensory thermotransduction, hair growth, and susceptibility to dermatitis in rodents, but the molecular mechanisms responsible for controlling TRPV3 channel activity in keratinocytes remain elusive. We show here that receptor-mediated breakdown of the membrane lipid phosphatidylinositol (4,5) bisphosphate (PI(4,5)P(2)) regulates the activity of both native TRPV3 channels in primary human skin keratinocytes and expressed TRPV3 in a HEK-293-derived cell line stably expressing muscarinic M(1)-type acetylcholine receptors. Stimulation of PI(4,5)P(2) hydrolysis or pharmacological inhibition of PI 4 kinase to block PI(4,5)P(2) synthesis potentiates TRPV3 currents by causing a negative shift in the voltage dependence of channel opening, increasing the proportion of voltage-independent current and causing thermal activation to occur at cooler temperatures. The activity of single TRPV3 channels in excised patches is potentiated by PI(4,5)P(2) depletion and selectively decreased by PI(4,5)P(2) compared with related phosphatidylinositol phosphates. Neutralizing mutations of basic residues in the TRP domain abrogate the effect of PI(4,5)P(2) on channel function, suggesting that PI(4,5)P(2) directly interacts with a specific protein motif to reduce TRPV3 channel open probability. PI(4,5)P(2)-dependent modulation of TRPV3 activity represents an attractive mechanism for acute regulation of keratinocyte signaling cascades that control cell proliferation and the release of autocrine and paracrine factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3047606PMC
http://dx.doi.org/10.1085/jgp.200910388DOI Listing

Publication Analysis

Top Keywords

trpv3 channels
12
trpv3
10
pi45p2
8
pi45p2 hydrolysis
8
skin keratinocytes
8
trpv3 channel
8
channel
5
voltage- temperature-dependent
4
temperature-dependent activation
4
activation trpv3
4

Similar Publications

Advances in the Study for Modulators of Transient Receptor Potential Vanilloid (TRPV) Channel Family.

Curr Top Med Chem

January 2025

School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, Jiangsu, PR China.

Article Synopsis
  • TRPV channels are part of a larger superfamily and are found in many cell types, with TRPV1-4 being sensitive to temperature and TRPV5-6 being selective for calcium ions.
  • These channels are important in various physiological processes and can be influenced by internal and external compounds, making them a target for pharmacological research.
  • Modulating these channels is crucial because it could lead to treatments for diseases like neurodegenerative disorders, pain, cancer, and skin issues, and there has been recent progress in exploring their ligands and related pharmacological effects.
View Article and Find Full Text PDF

Introduction: Promoting adipose thermogenesis is considered as a promising therapeutic intervention in obesity. However, endeavors to develop anti-obesity medications by targeting the canonical thermogenesis regulatory pathway, particularly β3-adrenergic receptor (β3-AR)-dependent mechanism, have failed due to the off-target effects of β3-AR agonists, exacerbating the risk of cardiovascular disease. Hyperforin (HPF), a natural compound extracted from the traditional herbal St.

View Article and Find Full Text PDF

The cumulative effect of compound heterozygous variants in TRPV3 caused Olmsted syndrome.

J Dermatol Sci

December 2024

Genetic Skin Disease Center, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China. Electronic address:

Background: Olmsted syndrome (OS) is a rare genodermatosis predominantly inherited in an autosomal dominant manner, typically arising from gain-of-function (GOF) variants in the transient receptor potential channel vanilloid 3 (TRPV3) gene.

Objective: This study aims to investigate potential mechanisms underlying OS in two cases presenting with an autosomal recessive inheritance pattern.

Methods: Next-generation sequencing panel was employed to identify TRPV3 variants.

View Article and Find Full Text PDF

Oligomeric rearrangement may regulate channel activity.

Biophys Rep

October 2024

State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300350, China.

Channels are typically gated by several factors, including voltage, ligand and mechanical force. Most members of the calcium homeostasis modulator (CALHM) protein family, large-pore ATP release channels, exist in different oligomeric states. Dynamic conversions between CALHM1 heptamers and octamers to gate the channel were proposed.

View Article and Find Full Text PDF

Qisheng wan decoction alleviates the inflammation of CCI rats via TRP channels.

J Ethnopharmacol

February 2025

School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China. Electronic address:

Article Synopsis
  • Qisheng wan decoction (QWD) is a traditional Chinese medicine showing potential for reducing neuropathic pain (NP) through anti-inflammatory effects, although its active components and mechanisms are not fully understood.
  • The study aimed to identify QWD's active ingredients using a combination of advanced analytical techniques and network pharmacology, and to investigate its anti-inflammatory mechanisms in a rat model of NP induced by chronic constriction injury.
  • Seventy compounds from QWD were identified, along with seven key targets related to inflammation, highlighting the decoction's complex interactions and potential effectiveness against NP.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!