Low folate status increases colorectal cancer risk. Paradoxically, overly abundant folate supplementation, which is not uncommon in the United States, may increase risk. The mechanisms of these effects are unknown. We conducted two translational studies to define molecular pathways in the human colon altered either by folate supplementation or by dietary folate depletion (followed by repletion). In the first study, 10 healthy, at-risk volunteers (with documented stable/normal folate intake) received supplemental folic acid (1 mg/d) for 8 weeks. In the second study, 10 similar subjects were admitted to a hospital as inpatients for 12 weeks to study folate depletion induced by a low folate diet. A repletion regimen of folic acid (1 mg/d) was provided for the last 4 of these weeks. Both studies included an 8-week run-in period to ensure stabilized folate levels prior to intervention. We obtained 12 rectosigmoid biopsies (from 4 quadrants of normal-appearing mucosa 10-15 cm from the anal verge) at baseline and at measured intervals in both studies for assessing the primary endpoints: genome-wide gene expression, genomic DNA methylation, promoter methylation (depletion/repletion study only), and p53 DNA strand breaks. Serum and rectosigmoid folate concentrations accurately tracked all changes in folate delivery (P < 0.05). In the first study, gene array analysis revealed that supplementation upregulated multiple inflammation- and immune-related pathways in addition to altering several 1-carbon-related enzymes (P < 0.001). In the second study, folate depletion downregulated genes involved in immune response, inflammation, the cell cycle, and mitochondrial/energy pathways; repletion reversed most of these changes. However, changes in gene expression after repletion in the second study (involving immune response and inflammation) did not reach the levels seen after supplementation in the first study. Neither genomic nor promoter-specific DNA methylation changed during the course of the depletion/repletion protocol, and genomic methylation did not change with supplementation in the first study. p53 DNA strand breaks increased with depletion after 12 weeks. In sum, depletion downregulates, whereas repletion or supplementation upregulates pathways related to inflammation and immune response. These findings provide novel support to the concept that excessive folate supplementation might promote colorectal carcinogenesis by enhancing proinflammatory and immune response pathways. These results indicate that modest changes in folate delivery create substantial changes in the molecular milieu of the human colon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742550PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-10-0143DOI Listing

Publication Analysis

Top Keywords

immune response
16
folate
13
folate supplementation
12
folate depletion
12
second study
12
study
9
altered folate
8
colorectal carcinogenesis
8
low folate
8
human colon
8

Similar Publications

Interplay of swine acute diarrhoea syndrome coronavirus and the host intrinsic and innate immunity.

Vet Res

January 2025

Department of Preventive Veterinary Medicine, Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.

Swine acute diarrhoea syndrome coronavirus (SADS-CoV), a novel HKU2-related coronavirus of bat origin, is a newly emerged swine enteropathogenic coronavirus that causes severe diarrhoea in piglets. SADS-CoV has a broad cell tropism with the capability to infect a wide variety of cells from human and diverse animals, which implicates its ability to hold high risks of cross-species transmission. The intracellular antiviral immunity, comprised of the intrinsic and innate immunity, represents the first line of host defence against viral infection prior to the onset of adaptive immunity.

View Article and Find Full Text PDF

SMAC-armed oncolytic virotherapy enhances the anticancer activity of PD1 blockade by modulating PANoptosis.

Biomark Res

January 2025

Department of Hematology and Medical Oncology, Emory University, 201 Dowman Dr, Atlanta, GA, 30322, USA.

Background: Oncolytic viruses (OVs) are increasingly recognized as promising tools for cancer therapy, as they selectively infect and destroy tumor cells while leaving healthy cells unharmed. Despite considerable progress, the limited therapeutic efficacy of OV-based virotherapy continues to be a significant challenge in cancer treatment.

Methods: The SMAC/DIABLO gene was inserted into the genome of vesicular stomatitis virus (VSV) to generate VSV-S.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Human adenovirus is an infectious agent that causes respiratory infections in adults and children. It has been found that immunocompromised children are highly susceptible to this pathogen, as it can swiftly evolve into severe pneumonia with multiple sequelae. Due to the lack of immunity in children, the body's response mechanisms to innate and acquired immunity are specialized.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (M. tuberculosis) and Mycobacterium abscessus (M. abscessus) are important pathogens that can cause lung diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!