Oxalic acid mineralization by electrochemical oxidation processes.

J Hazard Mater

Department of Chemical Engineering, National Chen-Kung University, Tainan 701, Taiwan.

Published: April 2011

In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2011.01.091DOI Listing

Publication Analysis

Top Keywords

oxalic acid
16
toc removal
12
electrochemical oxidation
8
oxidation processes
8
oxalic
4
acid mineralization
4
mineralization electrochemical
4
processes study
4
study electrochemical
4
processes utilized
4

Similar Publications

Background/objectives: Baobab ( L.) is an underutilized species and edible parts (fruits, leaves and seeds) contribute to food security and human health in tropical areas. Although the fruits have attracted greater research interest and have recently been approved for consumption in EU countries, the leaves are traditionally consumed but they have yet to be studied from an interventional perspective.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ERS) can activate pyroptosis through CHOP and TXNIP; however, the correlation between this process and the formation of kidney stones has not been reported. The purpose is to investigate the effects of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) on ERS and pyroptosis in HK-2 cells and to explore the formation mechanism of calcium oxalate stones. HK-2 cells were injured by 3 μm COM and COD.

View Article and Find Full Text PDF

For a deeper understanding of the characteristics exhibited by several novel mulberry varieties, the quality attributes and flavor components of five mulberry varieties (Zhongsang 5801, 2000-3, Jialing 40, Yuesang 10, and White Shahtoot Mulberry) were analyzed and compared. Zhongsang 5801 displayed the highest total phenol and flavone levels. Fructose and glucose were the primary sugars identified in the mulberries, with 2000-3 exhibiting the highest fructose content (39.

View Article and Find Full Text PDF

Plant-based macromolecules such as lignocellulosic fibers are one of the promising bio-resources to be utilized as reinforcement for developing sustainable composites. However, due to their hydrophilic nature and weak interfacial bonding with polymer matrices, these fibers are mostly incompatible with biopolymers. The current research endeavor explores the novel eco-friendly oxalic acid (CHO.

View Article and Find Full Text PDF

Beeswax, an FDA-approved component, has been extensively applied in feed, pharmaceutical, and food industries. The occurrence of neonicotinoid pesticides in beehive systems and their residues in beeswax have caused safety risks. Therefore, establishing a detection method for neonicotinoid pesticide residues in beeswax is crucial for ensuring its quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!