The literature has paid scarce attention to the modeling of the denitrification-anaerobic digestion process in packed bed biofilm tubular reactors used to treat wastewater. The present study obtained a steady-state model for industrial salmon fishery wastewater treatment in a biofilm tubular reactor, including pH as a variable and the effect of biomass on hydrolysis. The axial profile of the reactor components and process efficiency were predicted with deviations below 6%. The optimal operating zone for the process was found at hydraulic retention time (HRT)>1.5d and inlet protein concentration (S(prot,0))<3000 mgTOCL(-1). Based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on HRT. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH. Organic matter removal was related with the anaerobic digestion process, while denitrification influenced mostly nitrate and nitrite removal.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2011.01.015DOI Listing

Publication Analysis

Top Keywords

biofilm tubular
12
digestion process
8
salmon fishery
8
fishery wastewater
8
tubular reactor
8
modeling denitrification/anaerobic
4
denitrification/anaerobic digestion
4
process
4
process salmon
4
wastewater biofilm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!