Multiple origins of cholinergic innervation of the cochlear nucleus.

Neuroscience

Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA.

Published: April 2011

Acetylcholine (Ach) affects a variety of cell types in the cochlear nucleus (CN) and is likely to play a role in numerous functions. Previous work in rats suggested that the acetylcholine arises from cells in the superior olivary complex, including cells that have axonal branches that innervate both the CN and the cochlea (i.e. olivocochlear cells) as well as cells that innervate only the CN. We combined retrograde tracing with immunohistochemistry for choline acetyltransferase to identify the source of ACh in the CN of guinea pigs. The results confirm a projection from cholinergic cells in the superior olivary complex to the CN. In addition, we identified a substantial number of cholinergic cells in the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT) that project to the CN. On average, the PPT and LDT together contained about 26% of the cholinergic cells that project to CN, whereas the superior olivary complex contained about 74%. A small number of additional cholinergic cells were located in other areas, including the parabrachial nuclei.The results highlight a substantial cholinergic projection from the pontomesencephalic tegmentum (PPT and LDT) in addition to a larger projection from the superior olivary complex. These different sources of cholinergic projections to the CN are likely to serve different functions. Projections from the superior olivary complex are likely to serve a feedback role, and may be closely tied to olivocochlear functions. Projections from the pontomesencephalic tegmentum may play a role in such things as arousal and sensory gating. Projections from each of these areas, and perhaps even the smaller sources of cholinergic inputs, may be important in conditions such as tinnitus as well as in normal acoustic processing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3070814PMC
http://dx.doi.org/10.1016/j.neuroscience.2011.02.010DOI Listing

Publication Analysis

Top Keywords

superior olivary
20
olivary complex
20
cholinergic cells
16
cholinergic
8
cochlear nucleus
8
play role
8
cells
8
cells superior
8
tegmental nucleus
8
ppt ldt
8

Similar Publications

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Background: Postoperative pediatric cerebellar mutism syndrome (ppCMS) poses serious morbidity after posterior fossa tumor surgery. Neuroimaging studies aim to understand its pathophysiology, yet these vary in methodology and outcome measures. Therefore, we systematically reviewed the current literature to evaluate the evidence for differences in neuroimaging features between children with and without ppCMS.

View Article and Find Full Text PDF

In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development.

View Article and Find Full Text PDF

Auditory dysfunction affects the vast majority of people with autism spectrum disorder (ASD) and can range from deafness to hypersensitivity. exposure to the antiepileptic valproic acid (VPA) is associated with significant risk of an ASD diagnosis in humans and timed exposure to VPA is utilized as an animal model of ASD. VPA-exposed rats have significantly fewer neurons in their auditory brainstem, thalamus and cortex, reduced ascending projections to the midbrain and thalamus and reduced descending projections from the cortex to the auditory midbrain.

View Article and Find Full Text PDF

Introduction: Eye movement alterations are effective biomarkers for Alzheimer's disease (AD). This study examines task-evoked pupillary responses (TEPRs) as potential biomarkers of the mild cognitive impairment (MCI), the symptomatic stage preceding AD.

Methods: The prospective cohort study included 213 MCI patients and 514 cognitively normal controls (CNs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!