Resistance to the broad spectrum of chemotherapeutic agents in cancer cell lines and tumors has been called multiple drug resistance (MDR). In this study, the molecular mechanisms of resistance to two anticancer agents (paclitaxel and vincristine) in mammary carcinoma cell line MCF-7 were investigated. Drug resistant sublines to paclitaxel (MCF-7/Pac) and vincristine (MCF-7/Vinc) that were developed from sensitive MCF-7 cells (MCF-7/S) were used. cDNA microarray analysis was performed for the RNA samples of sensitive and resistant cells in duplicate experiments. GeneSpring GX 7.3.1 Software was used in data analysis. The results indicated that the upregulation of MDR1 gene is the dominating mechanism of the paclitaxel and vincristine drug resistance. Additionally the upregulation of the genes encoding the detoxifying enzymes (i.e. GSTP1) was observed. Significant downregulation of apoptotic genes (i.e. PDCD2/4/6/8) and upregulation of some cell cycle regulatory genes (CDKN2A, CCNA2 etc.) was seen which may be in close relation to MDR in breast cancer. Drug resistant cancer cells exhibit different gene expression patterns depending on drug treatment, and each drug resistance phenotype is probably genetically different. Further functional studies are needed to demonstrate the complete set of genes contributing to the drug resistance phenotype in breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2011.02.001DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
paclitaxel vincristine
12
mcf-7 cells
8
drug resistant
8
breast cancer
8
cancer cells
8
resistance phenotype
8
drug
7
resistance
6
cells
5

Similar Publications

Background: Androgenic anabolic steroids (AASs) are synthetic drugs structurally related to testosterone, with the ability to bind to androgen receptors. Their uncontrolled use by professional and recreational sportspeople is a widespread problem. AAS abuse is correlated with severe damage to the cardiovascular system, including changes in homeostasis and coagulation disorders.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!