Mapping heat exchange in an allosteric protein.

Biophys J

Department of Physiology and Biophysics, State University of New York, Buffalo, New York, USA.

Published: February 2011

Nicotinic acetylcholine receptors (AChRs) are synaptic ion channels that spontaneously isomerize (i.e., gate) between resting and active conformations. We used single-molecule electrophysiology to measure the temperature dependencies of mouse neuromuscular AChR gating rate and equilibrium constants. From these we estimated free energy, enthalpy, and entropy changes caused by mutations of amino acids located between the transmitter binding sites and the middle of the membrane domain. The range of equilibrium enthalpy change (13.4 kcal/mol) was larger than for free energy change (5.5 kcal/mol at 25°C). For two residues, the slope of the rate-equilibrium free energy relationship (Φ) was approximately constant with temperature. Mutant cycle analysis showed that both free energies and enthalpies are additive for energetically independent mutations. We hypothesize that changes in energy associated with changes in structure mainly occur close to the site of the mutation, and, hence, that it is possible to make a residue-by-residue map of heat exchange in the AChR gating isomerization. The structural correlates of enthalpy changes are discussed for 12 different mutations in the protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3037712PMC
http://dx.doi.org/10.1016/j.bpj.2010.12.3739DOI Listing

Publication Analysis

Top Keywords

free energy
12
heat exchange
8
achr gating
8
mapping heat
4
exchange allosteric
4
allosteric protein
4
protein nicotinic
4
nicotinic acetylcholine
4
acetylcholine receptors
4
receptors achrs
4

Similar Publications

The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.

View Article and Find Full Text PDF

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

It has been argued that realistic models of (singularity-free) black holes (BHs) embedded within an expanding Universe are coupled to the large-scale cosmological dynamics, with striking consequences, including pure cosmological growth of BH masses. In this pilot study, we examine the consequences of this growth for the stochastic gravitational wave background (SGWB) produced by inspiraling supermassive cosmologically coupled BHs. We show that the predicted SGWB amplitude is enhanced relative to the standard uncoupled case, while maintaining the [Formula: see text] frequency scaling of the spectral energy density.

View Article and Find Full Text PDF

Drug-drug co-amorphous systems are a promising approach to improve the aqueous solubility of poorly water-soluble drugs. This study explores the combination of breviscapine (BRE) and matrine (MAT) form an amorphous salt, aiming to synergistically enhance the solubility and dissolution of BRE. In silico analysis of electrostatic potential and local ionization energy were conducted on BRE-MAT complex to predict the intermolecular interactions, and solvent-free energies were calculated using thermodynamic integration and density functional theory.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!