Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which no effective therapy exists to date. To identify the molecular mechanisms underlying IPF, we performed comparative proteome analysis of lung tissue from patients with sporadic IPF (n = 14) and human donor lungs (controls, n = 10) using two-dimensional gel electrophoresis and MALDI-TOF-MS. Eighty-nine differentially expressed proteins were identified, from which 51 were up-regulated and 38 down-regulated in IPF. Increased expression of markers for the unfolded protein response (UPR), heat-shock proteins, and DNA damage stress markers indicated a chronic cell stress-response in IPF lungs. By means of immunohistochemistry, induction of UPR markers was encountered in type-II alveolar epithelial cells of IPF but not of control lungs. In contrast, up-regulation of heat-shock protein 27 (Hsp27) was exclusively observed in proliferating bronchiolar basal cells and associated with aberrant re-epithelialization at the bronchiolo-alveolar junctions. Among the down-regulated proteins in IPF were antioxidants, members of the annexin family, and structural epithelial proteins. In summary, our results indicate that IPF is characterized by epithelial cell injury, apoptosis, and aberrant epithelial proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr1009355 | DOI Listing |
Sci Rep
January 2025
Harbin Medical University, Harbin, Heilongjiang Province, China.
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully elucidated. In this study, weighted correlation network analysis (WGCNA), protein‒protein interaction, Kaplan-Meier curve, univariate Cox analysis and machine learning methods were used on datasets from the Gene Expression Omnibus database.
View Article and Find Full Text PDFEBioMedicine
January 2025
Department of Respiratory and Clinical Care Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China. Electronic address:
Background: Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia with restrictive ventilation. Recently, the structural and functional defects of small airways have received attention in the early pathogenesis of IPF. This study aimed to elucidate the characteristics of small airway epithelial dysfunction in patients with IPF and explore novel therapeutic interventions to impede IPF progression by targeting the dysfunctional small airways.
View Article and Find Full Text PDFLung
January 2025
Department of Respiratory Medicine, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China.
Purpose: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disorder characterized by dry cough, fatigue, and exacerbated dyspnea. The prognosis of IPF is notably unfavorable, becoming extremely poor when the disease advances acutely. Effective therapeutic intervention is essential to mitigate disease progression; hence, early diagnosis and treatment are paramount.
View Article and Find Full Text PDFEur J Hum Genet
January 2025
Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain.
Idiopathic pulmonary fibrosis (IPF) is a progressive, late-onset disease marked by lung scarring and irreversible loss of lung function. Genetic factors significantly contribute to both familial and sporadic cases, yet there are scarce evidence-based studies highlighting the benefits of integrating genetics into the management of IPF patients. In this study, we performed whole-exome sequencing and telomere length (TL) measurements on IPF patients and their relatives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
The study investigates the prognostic value of [F]fluorodeoxyglucose (FDG) PET/CT in patients with idiopathic pulmonary fibrosis (IPF). A total of 346 IPF patients who underwent FDG PET/CT between 2007 and 2020 were analyzed. Pulmonary FDG uptake [target to background ratio (TBR)] was binarized by optimal cut-off value based on survival analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!