Unlabelled: Peroxiredoxins (Prxs) are peroxidases that catalyze the reduction of reactive oxygen species (ROS). The active site cysteine residue of members of the 2-Cys Prx subgroup (Prx I to IV) of Prxs is hyperoxidized to cysteine sulfinic acid (Cys-SO(2) ) during catalysis with concomitant loss of peroxidase activity. Reactivation of the hyperoxidized Prx is catalyzed by sulfiredoxin (Srx). Ethanol consumption induces the accumulation of cytochrome P450 2E1 (CYP2E1), a major contributor to ethanol-induced ROS production in the liver. We now show that chronic ethanol feeding markedly increased the expression of Srx in the liver of mice in a largely Nrf2-dependent manner. Among Prx I to IV, only Prx I was found to be hyperoxidized in the liver of ethanol-fed wildtype mice, and the level of Prx I-SO(2) increased to ≈30% to 50% of total Prx I in the liver of ethanol-fed Srx(-/-) mice. This result suggests that Prx I is the most active 2-Cys Prx in elimination of ROS from the liver of ethanol-fed mice and that, despite the up-regulation of Srx expression by ethanol, the capacity of Srx is not sufficient to counteract the hyperoxidation of Prx I that occurs during ROS reduction. A protease protection assay revealed that a large fraction of Prx I is located together with CYP2E1 at the cytosolic side of the endoplasmic reticulum membrane. The selective role of Prx I in ROS removal is thus likely attributable to the proximity of Prx I and CYP2E1.

Conclusion: The pivotal functions of Srx and Prx I in protection of the liver in ethanol-fed mice was evident from the severe oxidative damage observed in mice lacking either Srx or Prx I.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.24104DOI Listing

Publication Analysis

Top Keywords

liver ethanol-fed
16
prx
15
2-cys prx
8
ethanol-fed mice
8
srx prx
8
liver
7
srx
6
mice
6
ros
5
concerted action
4

Similar Publications

Article Synopsis
  • High-mobility group box-1 (HMGB1) levels rise and undergo post-translational modifications (PTMs) with alcohol consumption, potentially influencing the development of alcohol-associated liver disease (AALD).
  • Researchers used a specific model of liver injury caused by alcohol to explore how manipulating HMGB1's expression and modifications in liver cells and immune cells impacts AALD.
  • Their findings show that different forms of HMGB1 have contrasting effects: oxidized HMGB1 (O) worsens liver injury while acetylated HMGB1 (Ac) can protect against these harmful effects, highlighting the importance of targeting O HMGB1 in treating AALD.
View Article and Find Full Text PDF

Background: Dichloroacetate (DCA), a pan-pyruvate dehydrogenase kinase inhibitor, ameliorates multiple pathological conditions and tissue injury and shows strong potential for clinical applications. Here, we investigated the preventive effects of DCA in a murine model of alcohol-associated liver disease.

Methods: C57BL/6J mice were subjected to the acute-on-chronic model of alcohol-associated liver disease and treated with DCA.

View Article and Find Full Text PDF

Saikogenin A improves ethanol-induced liver injury by targeting SIRT1 to modulate lipid metabolism.

Commun Biol

November 2024

Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Department of neurosurgery, Taihe Hospital, School of Pharmaceutical Sciences, Hubei University of Medicine, Shiyan, China.

Article Synopsis
  • * Saikosaponin A (SSa), a compound from Radix Bupleuri, shows potential in protecting the liver due to its anti-inflammatory and antioxidant effects, but its impact on ALD is not well-explored.
  • * Research indicates that SSa and its metabolite Saikogenin A (SGA) work through specific liver signaling pathways and can protect liver cells from ethanol damage, positioning SGA as a promising candidate for ALD therapy.
View Article and Find Full Text PDF

Although peroxisomes are known to oxidize ethanol, metabolize lipids, and regulate oxidative stress, they remain understudied in the context of ethanol-induced liver injury. We examined peroxisome early responses to alcohol-induced oxidative stress and lipid overload. Analysis of peroxisomes labeled with catalase, an ethanol oxidizing enzyme, or ABCD3, a fatty acid transporter, revealed that distinct peroxisome populations differentially respond to ethanol.

View Article and Find Full Text PDF

Diammonium glycyrrhizinate ameliorates alcohol-induced liver injury by reducing oxidative stress, steatosis, and inflammation.

Int Immunopharmacol

December 2024

Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China. Electronic address:

Alcohol-induced liver injury (ALI) is a serious global health issue. Diammonium glycyrrhizinate (DG), a pharmaceutical form of glycyrrhizic acid, has been reported to have anti-inflammatory and anti-oxidative stress properties. We investigated the potential hepatoprotective effects of DG against ALI and explored the mechanisms of it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!