Toxicological effect of emodin in mouse testicular gene expression profile.

J Appl Toxicol

Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries Inc., 10-1, Tebiro 6-chome, Kamakura, Kanagawa, 248-8555, Japan.

Published: November 2011

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a herbal medicine extracted from the rhizomes of Rheum palmatum, and is known as an inhibitor of casein kinase II (CK2). The CK2α' knockout mice are known to be male-infertile; however, there have been no reports on the toxicity of emodin in male reproductive organs/tissues. To evaluate the toxicological effects of emodin on differential gene expression profiles of the testis as compared with acrylamide, mice were orally administered emodin and acrylamide for 5 days at a dose of 1000 and 50 mg kg(-1) per day, respectively, and euthanized 24 h after the final administration. Both chemicals induced hypospermatogenesis, eosinophilic change and apoptosis of germ cell. A DNA microarray analysis showed that the IGF-1 receptor signaling was most closely related to the above testicular toxicity induced by emodin, and the RhoA regulation, TGF/WNT and cytoskeletal remodeling, TNFR1 signaling and adenosine A2A receptor signaling were commonly associated with the two chemicals. We selected 36 genes associated with CK2, apoptosis and spermatogenesis and determined their expression by quantitative reverse transcription-polymerase chain reaction (qPCR). Both chemicals perturbed the expression of genes associated with CK2. Genes related to spermatogenesis were also affected, as evidenced by hypospermatogenesis, and eosinophilic change and apoptosis of germ cell. The results suggest that emodin causes testicular toxicity, including apoptosis with related the IGF-1 receptor signaling pathway, and the two chemicals commonly affect CK2, spermatogenesis and sperm motility via four pathways, such as TNFR1 signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.1637DOI Listing

Publication Analysis

Top Keywords

receptor signaling
12
gene expression
8
hypospermatogenesis eosinophilic
8
eosinophilic change
8
change apoptosis
8
apoptosis germ
8
germ cell
8
igf-1 receptor
8
testicular toxicity
8
tnfr1 signaling
8

Similar Publications

Functional evolution of thyrotropin-releasing hormone neuropeptides: Insights from an echinoderm.

Zool Res

January 2025

The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, Shandong 266003, China. E-mail:

Feeding behavior is regulated by a complex network of endogenous neuropeptides. In chordates, this role is suggested to be under the control of diverse factors including thyrotropin-releasing hormone (TRH). However, whether this regulatory activity of TRH is functionally conserved in non-chordate metazoans, and to what extent this process is underpinned by interactions of TRH with other neuropeptides such as cholecystokinin (CCK, known as a satiety signal), remain unclear.

View Article and Find Full Text PDF

Background And Aims: Non-Alcoholic Steatohepatitis (NASH), a severe form of Non-Alcoholic Fatty Liver Disease (NAFLD), is characterized by inflammation and fibrosis in the liver, often progressing to cirrhosis and hepatocellular carcinoma. Despite its rising prevalence and significant disease burden, effective pharmacological treatments have been limited to lifestyle modifications and surgical interventions. Recently, resmetirom, a thyroid hormone receptor-β agonist, received FDA approval for treating NASH, offering new hope to patients.

View Article and Find Full Text PDF

Golgi protein 73: the driver of inflammation in the immune and tumor microenvironment.

Front Immunol

January 2025

Hangzhou Lin'an Traditional Chinese Medicine Hospital, Affiliated Hospital, Hangzhou City University, Hangzhou, China.

Golgi Protein 73 (GP73) is a Golgi-resident protein that is highly expressed in primary tumor tissues. Initially identified as an oncoprotein, GP73 has been shown to promote tumor development, particularly by mediating the transport of proteins related to epithelial-mesenchymal transition (EMT), thus facilitating tumor cell EMT. Though our previous review has summarized the functional roles of GP73 in intracellular signal transduction and its various mechanisms in promoting EMT, recent studies have revealed that GP73 plays a crucial role in regulating the tumor and immune microenvironment.

View Article and Find Full Text PDF

Unlabelled: Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling.

View Article and Find Full Text PDF

Introduction: In patients with acute respiratory distress syndrome, mechanical ventilation often leads to ventilation-induced lung injury (VILI), which is attributed to unphysiological lung strain (UPLS) in respiratory dynamics. Platelet endothelial cell adhesion molecule-1 (PECAM-1), a transmembrane receptor, senses mechanical signals. The Src/STAT3 pathway plays a crucial role in the mechanotransduction network, concurrently triggering pyroptosis related inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!