Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective And Design: To clarify the molecular mechanism of polyenylphosphatidylcholine (PPC), we examined the involvement of reactive oxygen species (ROS) and NADPH oxidase 4 (Nox4) in human hepatic stellate cells (HSCs).
Material: Using human LX-2 HSC cells, we examined the effects of PPC on expression of α-smooth muscle actin (α-SMA) and collagen 1, generation of ROS, Nox4 expression, p38 activation and cell proliferation, induced by transforming growth factor β1 (TGFβ1).
Results: PPC suppressed ROS which are induced by TGFβ1, phosphorylation of p38MAPK, and expression levels of α-SMA and collagen 1 in a dose-dependent manner. Higher concentrations of PPC also suppressed Nox4 levels.
Conclusion: These results suggest that ROS and Nox4 induced by TGFβ1 are the therapeutic targets of PPC in the suppression of human hepatic stellate cell activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00011-011-0309-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!