Background: Hydroxycamptothecin (HCPT) is an anti-tumor agent that can induce differentiation in human cancer cells. Recent evidence indicates that side population (SP) cells possess characteristics of stem-like cells, and may be capable of initiating tumor growth.
Aims: The present study investigated the differentiation of cancer stem-like cells derived from hepatocellular carcinoma.
Methods And Results: Flow cytometry was used to isolated SP cells from HCC cell line (MHCC97 cells). These SP cells exhibit several stem-like cell characteristics that are distinct from the main population (MP) cells in vitro. After 3 days of induction with a low concentration of HCPT, the SP cells lost their capacity to proliferate and invade, and their tumorigenicity declined. Based on real-time quantitative RT-PCR, we also found that the expression of hepatocyte-specific markers such as α-fetoprotein, albumin, hepatocyte nuclear factor-4 and miR-122 gradually changed during the differentiation of SP cells.
Conclusions: Our data suggest that a low concentration of HCPT can induce hepatocyte-specific differentiation of cancer stem-like cells from MHCC97 cells, offering a possible therapeutic strategy for the treatment of human malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-011-1601-6 | DOI Listing |
BMC Cancer
January 2025
College of Food and Biological Engineering, Chengdu University, Chengdu, 610000, People's Republic of China.
Cullin-5 (Cul5) coordinates assembly of cullin-RING-E3 ubiquitin (Ub) ligase (CRL) complexes that include Suppressor of Cytokine Signaling (SOCS)-box-containing proteins. The SOCS-box proteins function to recruit specific substrates to the complex for ubiquitination and degradation. In hematopoiesis, SOCS-box proteins are best known for regulating the actions of cytokines that utilize the JAK-STAT signaling pathway.
View Article and Find Full Text PDFNat Immunol
January 2025
Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Chimeric antigen receptor T cells (CAR T cells) with T stem (T) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human T cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RACCR7TCF1 T cell-like CAR T cells from both healthy donors and patients with cancer.
View Article and Find Full Text PDFNat Commun
January 2025
Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.
View Article and Find Full Text PDFNature
January 2025
Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also play a key role in PD-1 directed immunotherapy. These PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells, also referred to as precursors of exhausted T cells, have a distinct program that allows them to adapt to chronic antigen stimulation. Using the mouse model of chronic LCMV infection we found that virus specific stem-like CD8+ T cells are generated early (day 5) during chronic infection suggesting that this crucial fate commitment occurs irrespective of infection outcome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!