Celiac disease (CD) affects at least 1% of the Western population but remains largely unrecognized. In our laboratory, we utilize a novel algorithm to diagnose pediatric CD that offers both high sensitivity and high specificity for diagnosis in an outpatient setting. The aim of the present study was to challenge this algorithm and to test its performance in children and adults suspected of having CD. Using a three-assay algorithm, screening with the most sensitive tissue transglutaminase (tTG) complexed with deamidated gliadin peptide neoepitope immunoglobulin A (IgA)+IgG assay and confirming with the two specific tTG IgA and tTG IgA+IgG assays, we examined the serological results from 112 children aged 0-17 years old and 60 adults in comparison to their respective biopsy results. The algorithm performance was calculated by statistical analysis. The use of the new algorithm enabled us to diagnose CD with 98% sensitivity, 93% specificity and 95% accuracy in the pediatric group and 94% sensitivity, 92% specificity and 93% accuracy in the total population studied. The false-negative cases in the adult group were attributed to previous adherence to a gluten-free diet, and the single false-negative result in a young child became a true positive after 6 months. We have also monitored three celiac patients before and after diagnosis and found that the algorithm may be suitable for disease monitoring. The newly proposed three-assay algorithm for celiac detection is very reliable in both children and adults. Due to the high performance of this assay, the further need for confirmatory intestinal biopsies will be reassessed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4003133 | PMC |
http://dx.doi.org/10.1038/cmi.2010.63 | DOI Listing |
Comput Biol Med
January 2025
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32610, United States; Department of Medicine, University of Florida, Gainesville, FL, 32610, United States; Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, 32610, United States; Intelligent Clinical Care Center, University of Florida, Gainesville, FL, 32610, United States. Electronic address:
Retinal image registration is essential for monitoring eye diseases and planning treatments, yet it remains challenging due to large deformations, minimal overlap, and varying image quality. To address these challenges, we propose RetinaRegNet, a multi-stage image registration model with zero-shot generalizability across multiple retinal imaging modalities. RetinaRegNet begins by extracting image features using a pretrained latent diffusion model.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA; email:
Understanding the molecular, cellular, and physiological components of neurodegenerative diseases (NDs) is paramount for developing accurate diagnostics and efficacious therapies. However, the complexity of ND pathology and the limitations associated with conventional analytical methods undermine research. Fortunately, microfluidic technology can facilitate discoveries through improved biomarker quantification, brain organoid culture, and small animal model manipulation.
View Article and Find Full Text PDFLeuk Lymphoma
January 2025
Department of Oncology, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, China.
In this study, we aimed to uncover novel biomarkers in acute myeloid leukemia (AML) that could serve as prognostic indicators or therapeutic targets. We analyzed AML microarray datasets from the Gene Expression Omnibus (GEO) repository, identifying key differentially expressed genes (DEGs) through the robust rank aggregation (RRA) approach. The functions of these DEGs were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry and Material Science, Northwest University, Xi'an 710127, China.
With rapid, energy-intensive, and coal-fueled economic growth, global air quality is deteriorating, and particulate matter pollution has emerged as one of the major public health problems worldwide. It is extremely urgent to achieve carbon emission reduction and air pollution prevention and control, aiming at the common problem of weak and unstable signals of characteristic elements in the application of laser-induced breakdown spectroscopy (LIBS) technology for trace element detection. In this study, the influence of the optical fiber collimation signal enhancement method on the LIBS signal was explored.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
University of Technology, Department of Control and System Engineering, Baghdad, 10066, Iraq.
Latency in flux observation has an adverse effect on the performance of observer-based field-oriented speed control for three-phase induction motor (IM). The reduction of the convergent rate of estimation errors could improve the performance of speed-controlled IM based on flux observers. The main contribution is to design a fast convergent flux observer, which provides bounded estimation error immediately after one instant of motor startup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!