Targeting metabolic remodeling in glioblastoma multiforme.

Oncotarget

The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children Research Institute, University of Toronto, Toronto, Ontario, Canada.

Published: November 2010

A key aberrant biological difference between tumor cells and normal differentiated cells is altered metabolism, whereby cancer cells acquire a number of stable genetic and epigenetic alterations to retain proliferation, survive under unfavorable microenvironments and invade into surrounding tissues. A classic biochemical adaptation is the metabolic shift to aerobic glycolysis rather than mitochondrial oxidative phosphorylation, regardless of oxygen availability, a phenomenon termed the "Warburg Effect". Aerobic glycolysis, characterized by high glucose uptake, low oxygen consumption and elevated production of lactate, is associated with a survival advantage as well as the generation of substrates such as fatty acids, amino acids and nucleotides necessary in rapidly proliferating cells. This review discusses the role of key metabolic enzymes and their association with aerobic glycolysis in Glioblastoma Multiforme (GBM), an aggressive, highly glycolytic and deadly brain tumor. Targeting key metabolic enzymes involved in modulating the "Warburg Effect" may provide a novel therapeutic approach either singularly or in combination with existing therapies in GBMs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035636PMC
http://dx.doi.org/10.18632/oncotarget.190DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
12
glioblastoma multiforme
8
"warburg effect"
8
key metabolic
8
metabolic enzymes
8
targeting metabolic
4
metabolic remodeling
4
remodeling glioblastoma
4
multiforme key
4
key aberrant
4

Similar Publications

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Metabolic Reprogramming of Neutrophils in the Tumor Microenvironment: Emerging Therapeutic Targets.

Cancer Lett

January 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China. Electronic address:

Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production.

View Article and Find Full Text PDF

Potential Strategies Applied by to Survive the Immunity of Its Crustacean Hosts.

Pathogens

January 2025

Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

is the specific pathogen for "milky disease" in the Chinese mitten crab (), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of , largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of cells collected from a control group (cultured without hemocytes) and a treatment group (cultured with hemocytes), using RNA sequencing.

View Article and Find Full Text PDF

Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown.

View Article and Find Full Text PDF

IRAP Drives Ribosomal Degradation to Refuel Energy for Platelet Activation during Septic Thrombosis.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.

Platelets play crucial roles in multiple pathophysiological processes after energy-dependent activation. It is puzzling how such a small cellular debris has abundant energy supply. In this study, it is shown that insulin-regulated aminopeptidase (IRAP), a type II transmembrane protein, is a key regulator for platelet activation by promoting energy regeneration during septic thrombosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!