In an analysis of 47 aerobic myxobacterial strains, representing 19 genera in suborders Cystobacterineae, Nannocystineae, Sorangiineae, and a novel isolate, "Aetherobacter" SBSr008, an enormously diverse array of fatty acids (FAs) was found. The distribution of straight-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) supports the reported clustering of strains in the phylogenetic tree based on 16S rRNA genes. This finding additionally allows the prediction and assignment of the novel isolate SBSr008 into its corresponding taxon. Sorangiineae predominantly contains larger amounts of SCFA (57 to 84%) than BCFA. On the other hand, Cystobacterineae exhibit significant BCFA content (53 to 90%), with the exception of the genus Stigmatella. In Nannocystineae, the ratio of BCFA and SCFA seems dependent on the taxonomic clade. Myxobacteria could also be identified and classified by using their specific and predominant FAs as biomarkers. Nannocystineae is remarkably unique among the suborders for its absence of hydroxy FAs. After the identification of arachidonic (AA) FA in Phaselicystidaceae, eight additional polyunsaturated fatty acids (PUFAs) belonging to the omega-6 and omega-3 families were discovered. Here we present a comprehensive report of FAs found in aerobic myxobacteria. Gliding bacteria belonging to Flexibacter and Herpetosiphon were chosen for comparative analysis to determine their FA profiles in relation to the myxobacteria.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3133044 | PMC |
http://dx.doi.org/10.1128/JB.01091-10 | DOI Listing |
Aging Clin Exp Res
January 2025
Department of General Internal Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
Background: With the acceleration of aging, sarcopenia has become a reality of concern today. This study aimed to evaluate the efficacy of various non-pharmacologic interventions and find the optimal interventions for sarcopenia.
Methods: PubMed, Medline OVID, EMBASE, Scopus, and Cochrane were searched from 1 January 2000 to 25 October 2023, with language restrictions to English.
Sci Rep
January 2025
Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Endocrinology and Metabolism and Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, 4301 W. Markham, #587, Little Rock, AR, 72205, USA.
Phosphatidylcholine is a ubiquitous phospholipid. It contains a phosphocholine (PC) headgroup and polyunsaturated fatty acids that, when oxidized, form reactive oxidized phospholipids (PC-OxPLs). PC-OxPLs are pathogenic in multiple diseases and neutralized by anti-PC IgM antibodies.
View Article and Find Full Text PDFNPJ Syst Biol Appl
January 2025
United Therapeutics Corporation, Silver Spring, MD, USA.
Challenges in drug development for rare diseases such as pulmonary arterial hypertension can be addressed through the use of mathematical modeling. In this study, a quantitative systems pharmacology model of pulmonary arterial hypertension pathophysiology and pharmacology was used to predict changes in pulmonary vascular resistance and six-minute walk distance in the context of oral treprostinil clinical studies. We generated a virtual population that spanned the range of clinical observations and then calibrated virtual patient-specific weights to match clinical trials.
View Article and Find Full Text PDFVirulence
January 2025
The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China.
Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!