Increasing arterial blood pressure (AP) decreases ventilation, whereas decreasing AP increases ventilation in experimental animals. To determine whether a "ventilatory baroreflex" exists in humans, we studied 12 healthy subjects aged 18-26 yr. Subjects underwent baroreflex unloading and reloading using intravenous bolus sodium nitroprusside (SNP) followed by phenylephrine ("Oxford maneuver") during the following "gas conditions:" room air, hypoxia (10% oxygen)-eucapnia, and 30% oxygen-hypercapnia to 55-60 Torr. Mean AP (MAP), heart rate (HR), cardiac output (CO), total peripheral resistance (TPR), expiratory minute ventilation (V(E)), respiratory rate (RR), and tidal volume were measured. After achieving a stable baseline for gas conditions, we performed the Oxford maneuver. V(E) increased from 8.8 ± 1.3 l/min in room air to 14.6 ± 0.8 l/min during hypoxia and to 20.1 ± 2.4 l/min during hypercapnia, primarily by increasing tidal volume. V(E) doubled during SNP. CO increased from 4.9 ± .3 l/min in room air to 6.1 ± .6 l/min during hypoxia and 6.4 ± .4 l/min during hypercapnia with decreased TPR. HR increased for hypoxia and hypercapnia. Sigmoidal ventilatory baroreflex curves of V(E) versus MAP were prepared for each subject and each gas condition. Averaged curves for a given gas condition were obtained by averaging fits over all subjects. There were no significant differences in the average fitted slopes for different gas conditions, although the operating point varied with gas conditions. We conclude that rapid baroreflex unloading during the Oxford maneuver is a potent ventilatory stimulus in healthy volunteers. Tidal volume is primarily increased. Ventilatory baroreflex sensitivity is unaffected by chemoreflex activation, although the operating point is shifted with hypoxia and hypercapnia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075041PMC
http://dx.doi.org/10.1152/ajpheart.01217.2010DOI Listing

Publication Analysis

Top Keywords

ventilatory baroreflex
12
room air
12
tidal volume
12
gas conditions
12
baroreflex sensitivity
8
chemoreflex activation
8
baroreflex unloading
8
oxford maneuver
8
increased l/min
8
l/min room
8

Similar Publications

Effect of chronic exogenous oxytocin administration on exercise performance and cardiovagal control in hypobaric hypoxia in rats.

Biol Res

November 2024

Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura (FIMEDALT), Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.

Background: Outstanding exercise performance has been associated with an exacerbated vagal outflow. Nevertheless, during high-altitude hypobaric-hypoxia (HH), there is a baroreflex-dependent parasympathetic withdrawal and exercise performance deterioration. Notably, vagal control is pivotal in exercise performance, and exogenous oxytocin (OXY) administration has been shown to enhance parasympathetic drive; however, no evidence shows their role in exercise performance during HH.

View Article and Find Full Text PDF

Citherlet, Tom, Antoine Raberin, Giorgio Manferdelli, Nicolas Bourdillon, and Grégoire P Millet. Impact of the menstrual cycle (MC) on the cardiovascular and ventilatory responses during exercise in normoxia and hypoxia. 00:00-00, 2024.

View Article and Find Full Text PDF

Effect of neuromodulation for chronic pain on the autonomic nervous system: a systematic review.

BJA Open

September 2024

STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.

Article Synopsis
  • There is increasing interest in neuromodulation techniques, like spinal cord and peripheral nerve stimulation, as alternatives for managing chronic pain, focusing on their effects on the autonomic nervous system (ANS).
  • A systematic review analyzed 43 studies from various databases, assessing how neuromodulation impacts the ANS in chronic pain patients, with cardiovascular parameters being the most common outcome measured.
  • Results showed a variety of ANS function indicators, emphasizing the need for better understanding of neuromodulation's role in chronic pain treatment and its interaction with the ANS.
View Article and Find Full Text PDF

Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance.

Front Physiol

June 2024

Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile.

The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.

View Article and Find Full Text PDF

Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!