Directed evolution is a valuable technique to improve enzyme activity in the absence of a priori structural knowledge, which can be typically enhanced via structure-guided strategies. In this study, a combination of both whole-gene error-prone polymerase chain reaction and site-saturation mutagenesis enabled the rapid identification of mutations that improved RmlA activity toward non-native substrates. These mutations have been shown to improve activities over 10-fold for several targeted substrates, including non-native pyrimidine- and purine-based NTPs as well as non-native D- and L-sugars (both α- and β-isomers). This study highlights the first broadly applicable high throughput sugar-1-phosphate nucleotidyltransferase screen and the first proof of concept for the directed evolution of this enzyme class toward the identification of uniquely permissive RmlA variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075670 | PMC |
http://dx.doi.org/10.1074/jbc.M110.206433 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!