Background: Cystic fibrosis is caused by mutations of the Cystic Fibrosis Transmembrane conductance Regulator gene (CFTR). Among the 1795 reported mutations, 221 (12.31%) are believed to affect pre-mRNA splicing. Nevertheless, not all splicing mutations have been demonstrated, by functional assays, to affect splicing in living cells.
Methods: We have used a minigene-based approach, coupled to site-specific mutagenesis, to analyze the effects of presumptive pre-mRNA splicing mutations.
Results: We show here that the intron 11 1811+1G>C and the intron 12 1898+3A>G mutations strongly affected CFTR pre-mRNA splicing. The encoded proteins are predicted to be defective, which would thus participate in the disease phenotype of carrier individuals.
Conclusions: These results further validate the minigene strategy for the study of presumptive splice mutations, and report unanticipated defects in splicing. Such assays should improve the analysis of genotype-phenotype correlations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcf.2010.12.008 | DOI Listing |
Mol Cell
January 2025
European Molecular Biology Laboratory (EMBL), EMBL Grenoble, 71 Avenue des Martyrs, 38042 Grenoble, France. Electronic address:
The minor spliceosome catalyzes excision of U12-dependent introns from precursors of eukaryotic messenger RNAs (pre-mRNAs). This process is critical for many cellular functions, but the underlying molecular mechanisms remain elusive. Here, we report a cryoelectron microscopy (cryo-EM) reconstruction of the 13-subunit human U11 small nuclear ribonucleoprotein particle (snRNP) complex in apo and substrate-bound forms, revealing the architecture of the U11 small nuclear RNA (snRNA), five minor spliceosome-specific factors, and the mechanism of the U12-type 5' splice site (5'SS) recognition.
View Article and Find Full Text PDFMol Cell
January 2025
Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:
Pre-mRNA 3' processing is an integral step in mRNA biogenesis. However, where this process occurs in the nucleus remains unknown. Here, we demonstrate that nuclear speckles (NSs), membraneless organelles enriched with splicing factors, are major sites for pre-mRNA 3' processing in human cells.
View Article and Find Full Text PDFRNA
December 2024
Instiute of Bioorganic Chemistry PAS
In this article, we present an approach to maximizing the splicing regulatory properties of splice-switching oligonucleotide (SSO) designed to regulate alternative splicing of PKM pre-mRNA. The studied SSO interacts with the regulatory element in exon 10 of PKM pre-mRNA and contributes to a significant reduction of PKM2 level with a simultaneous increase of the PKM1 isoform. This SSO forms a duplex not only with the regulatory fragment of exon 10 but also with a similar RNA fragment of intron 9.
View Article and Find Full Text PDFPlants (Basel)
December 2024
A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Southern Hospital affiliated with Shenzhen University, Shenzhen Guangdong 518001, China.
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype with poor prognosis. RNA alternative splicing dysregulation plays a critical role in the initiation and progression of TNBC. This article systematically introduces the basic process of RNA splicing and then focuses on reviewing the aberrant alternative splicing events and their biological effects in TNBC: 1) Multiple splicing-related factors promote tumor cell proliferation and mediate chemotherapy resistance by regulating the alternative splicing of genes involved in cell survival and drug response; 2) dysregulation of splicing regulatory networks leads to altered splicing of multiple metastasis-related genes, promoting tumor invasion and metastasis; 3) aberrant alternative splicing events participate in tumor progression by affecting the expression of DNA damage repair genes; 4) dysregulation of alternative splicing is also involved in the regulation of tumor immune evasion and stem cell properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!