A hypothesis of local intrinsic cortical signal processing.

Med Hypotheses

Cognitive Neurology, Technische Universität Carolo-Wilhelmina Braunschweig, Department of Neurology, Braunschweig Hospital, Germany.

Published: May 2011

Nearly a century ago, Ramón y Cajal [1] speculated that cortical interneurones underlie specific functions that are fundamental to human thought. Here we develop a computational analysis of the function of local cortical loops and their synaptic connections. Specifically, we propose that the function of cortical interneurones is to reduce redundancy and to contribute to compute saliency of information represented in neurones by implementing divisive normalization and multiplicative filtering functions. This contextual filtering by cortical interneurones reduces the energy of locally homogeneous information flowing between different cortical areas, in a non-linear manner and along various event spaces, thereby ensuring a homeostatic level of informational selectivity. Dysregulations of the synaptic transmission in this ubiquitous basic building block of the functional architecture of the brain are correspondingly associated with disturbances of informational selectivity. Perturbations of synaptic transmission in local intrinsic connections of the cerebral cortex consequently lead to various kinds of cognitive and/or affective disorders, depending on the exact nature, the extension and the specific localization of the distortion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mehy.2011.01.026DOI Listing

Publication Analysis

Top Keywords

cortical interneurones
12
local intrinsic
8
informational selectivity
8
synaptic transmission
8
cortical
6
hypothesis local
4
intrinsic cortical
4
cortical signal
4
signal processing
4
processing century
4

Similar Publications

What if what matters is emergent?

Neuron

January 2025

Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA. Electronic address:

In this issue of Neuron, Ruggiero et al. demonstrate that hippocampal networks maintain a stable mean firing rate despite unstable individual units. This homeostatic control operates through NMDAR-eEF2K-BDNF signaling in parvalbumin interneurons.

View Article and Find Full Text PDF

Dravet syndrome (DS) is a developmental and epileptic encephalopathy (DEE) that begins in the first year of life. While most cases of DS are caused by variants in SCN1A, variants in SCN1B, encoding voltage-gated sodium channel β1 subunits, are also linked to DS or to the more severe early infantile DEE. Both disorders fall under the OMIM term DEE52.

View Article and Find Full Text PDF

Hodological patterning as an organizing principle in vertebrate motor circuitry.

Front Neuroanat

January 2025

Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.

Hodological patterning refers to developmental mechanisms that link the location of neurons in the brain or spinal cord to specific axonal trajectories that direct connectivity to synaptic targets either within the central nervous system or in the periphery. In vertebrate motor circuits, hodological patterning has been demonstrated at different levels, from the final motor output of somatic and preganglionic autonomic neurons targeting peripheral motoneurons and ganglion cells, to premotor inputs from spinal and brainstem neuron populations targeting the somatic motoneurons and preganglionic autonomic neurons, to cortical neurons that delegate movement commands to the brainstem and spinal neurons. In many cases molecular profiling reveals potential underlying mechanisms whereby selective gene expression creates the link between location and axon trajectory.

View Article and Find Full Text PDF

Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.

View Article and Find Full Text PDF

Evolutionary origins of synchronization for integrating information in neurons.

Front Cell Neurosci

January 2025

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

The evolution of brain-expressed genes is notably slower than that of genes expressed in other tissues, a phenomenon likely due to high-level functional constraints. One such constraint might be the integration of information by neuron assemblies, enhancing environmental adaptability. This study explores the physiological mechanisms of information integration in neurons through three types of synchronization: chemical, electromagnetic, and quantum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!