The adsorption of short single-stranded DNA oligomers to mineral surfaces.

Chemosphere

Geophysical Laboratory, the Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, DC 20015, USA.

Published: June 2011

We studied the adsorption of short single-stranded deoxyribonucleic acid (ssDNA) oligomers, of approximately 30 nucleotides (nt) in length, of varying sequence, adenine+guanine+cytosine (AGC) content, and propensity to form secondary structure, to equal surface area samples of olivine, pyrite, calcite, hematite, and rutile in 0.1M NaCl, 0.05M pH 8.1 KHCO(3) buffer. Although the mineral surfaces have widely varying points of zero charge, under these conditions they show remarkably similar adsorption of ssDNA regardless of oligomer characteristics. Mineral surfaces appear to accommodate ssDNA comparably, or ssDNA oligomers of this length are able to find binding sites of comparable strength and density due to their flexibility, despite the disparate surface properties of the different minerals. This may partially be due charge shielding by the ionic strength of the solutions tested, which are typical of many natural environments. These results may have some bearing on the adsorption and accumulation of biologically derived nucleic acids in sediments as well as the abiotic synthesis of nucleic acids before the origin of life.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2011.01.023DOI Listing

Publication Analysis

Top Keywords

mineral surfaces
12
adsorption short
8
short single-stranded
8
ssdna oligomers
8
nucleic acids
8
adsorption
4
single-stranded dna
4
dna oligomers
4
oligomers mineral
4
surfaces studied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!