Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.

Methods

Analytical Signalling Laboratory, Centre for Cell Signalling, Barts Cancer Institute, Bart's and the London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.

Published: August 2011

Phosphorylation is a protein post-translational modification with key roles in the regulation of cell biochemistry and signaling. In-depth analysis of phosphorylation using mass spectrometry is permitting the investigation of processes controlled by phosphorylation at the system level. A critical step of these phosphoproteomics methods involves the isolation of phosphorylated peptides from the more abundant unmodified peptides produced by the digestion of cell lysates. Although different techniques to enrich for phosphopeptides have been reported, there are limited data on their suitability for direct quantitative analysis by MS. Here we report a TiO(2) based enrichment method compatible with large-scale and label-free quantitative analysis by LC-MS/MS. Starting with just 500 μg of protein, the technique reproducibly isolated hundreds of peptides, >85% of which were phosphorylated. These results were obtained by using relatively short LC-MS/MS gradient runs (45 min) and without any previous separation step. In order to characterize the performance of the method for quantitative analyses, we employed label-free LC-MS/MS using extracted ion chromatograms as the quantitative readout. After normalization, phosphopeptides were quantified with good precision (coefficient of variation was 20% on average, n=900 phosphopeptides), linearity (correlation coefficients >0.98) and accuracy (deviations <20%). Thus, phosphopeptide ion signals correlated with the concentration of the respective phosphopeptide in samples, making the approach suitable for in-depth relative quantification of phosphorylation by label-free LC-MS/MS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3158853PMC
http://dx.doi.org/10.1016/j.ymeth.2011.02.004DOI Listing

Publication Analysis

Top Keywords

enrichment method
8
label-free quantitative
8
quantitative analysis
8
quantitative
5
characterization tio₂
4
tio₂ enrichment
4
method label-free
4
quantitative phosphoproteomics
4
phosphoproteomics phosphorylation
4
phosphorylation protein
4

Similar Publications

Efficient and Rapid Enrichment of Extracellular Vesicles Using DNA Nanotechnology-Enabled Synthetic Nano-Glue.

Anal Chem

January 2025

The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.

Swift and efficient enrichment and isolation of extracellular vesicles (EVs) are crucial for enhancing precise disease diagnostics and therapeutic strategies, as well as elucidating the complex biological roles of EVs. Conventional methods of isolating EVs are often marred by lengthy and laborious processes. In this study, we introduce an innovative approach to enrich and isolate EVs by leveraging the capabilities of DNA nanotechnology.

View Article and Find Full Text PDF

Objective: Juvenile dermatomyositis (JDM) is a complex autoimmune disease, and its pathogenesis remains poorly understood. Building upon previous research on the immunological and inflammatory aspects of JDM, this study aims to investigate the role of pyroptosis in the pathogenesis of JDM using a comprehensive bioinformatics approach.

Methods: Two microarray datasets (GSE3307 and GSE11971) were obtained from the Gene Expression Omnibus database, and a list of 62 pyroptosis-related genes was compiled.

View Article and Find Full Text PDF

Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.

Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).

View Article and Find Full Text PDF

Background: Ferroptosis is a cell death process that depends on iron and reactive oxygen species. It significantly contributes to cardiovascular diseases. However, its exact role in ischemic cardiomyopathy (ICM) is still unclear.

View Article and Find Full Text PDF

Purpose: Health and Attainment of Pupils in a Primary Education National (HAPPEN) is a primary school national cohort which brings together education, health and well-being research in line with the Curriculum for Wales framework. Health, education and social care data are linked and held in the Secure Anonymised Information Linkage (SAIL) Databank. In addition, school-aged children complete the HAPPEN Survey to inform the design and implementation of the Health and Well-being curriculum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!