During puberty, human adolescents develop a later chronotype, exhibiting a delay in the timing of rest and activity as well as other daily physiological rhythms. The purpose of this study was to determine whether similar changes in chronotype occur during puberty in a laboratory rodent species, and, if so, to determine whether they are due to pubertal hormones acting on the circadian timekeeping system. To test this hypothesis, we carefully tracked daily activity rhythms across puberty in the slow-developing rodent Octodon degus. We confirmed that male degus showed a large reorganization of activity rhythms that correlated with secondary sex development during puberty, including a loss of bimodality and a 3-5 h phase-advance. Similar to humans, this circadian reorganization showed distinct sex differences, with females showing little change during puberty in two separate experiments. Prepubertal gonadectomy (GDX) eliminated the changes, whereas SHAM gonadectomy had little impact. Therefore, gonadal hormones are likely to play a role in pubertal changes in chronotype in this rodent species. Using evidence from a variety of species, including our recent studies in the rat, we conclude that chronotype changes during puberty are a well-demonstrated phenomenon in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3112253PMC
http://dx.doi.org/10.1016/j.yhbeh.2011.02.004DOI Listing

Publication Analysis

Top Keywords

chronotype changes
8
changes puberty
8
gonadal hormones
8
slow-developing rodent
8
rodent octodon
8
octodon degus
8
changes chronotype
8
rodent species
8
activity rhythms
8
puberty
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!