Impaired migration and cell volume regulation in aquaporin 5-deficient SPC-A1 cells.

Respir Physiol Neurobiol

Department of Respiratory Medicine, Research Institute of Respiratory Disease, Fudan University, Zhongshan Hospital, Shanghai 200032, PR China.

Published: May 2011

Background: Aquaporin 5 (AQP5) is widely expressed in various organ and tissues. In light of the novel oncogenic properties of aquaporins (AQPs), here we investigated the effect of AQP5 knockdown by RNAi on transmembrane osmotic water permeability, cell migration potential and cell volume regulation ability.

Methods: AQP5 expression was inhibited by short hairpin RNA in SPC-A1 cells, a lung adenocarcinoma cell line. Cells loaded with a fluoroprobe (calcein-AM) were immersed in either isosmotic, hyperosmotic or hyposmotic solutions, and fluorescence intensity was recorded using confocal microscopy. These measurements were used to calculate osmotic water permeability coefficients (Pf) and to monitor regulated volume decrease (RVD). Tumor cell migration and invasion assays were performed in a modified Boyden chamber. Wound healing and colony forming ability were also tested.

Results: Although self-quenching was not found in SPC-A1 cells, we observed a linear relationship between fluorescence intensity and cell water volume, suggesting that this method is a sensitive and reproducible way to measure single-cell transmembrane water permeability. Cells in which the AQP5 gene was silenced showed a 49.4% decrease in osmotic water permeability, a 55.3% decrease in migration and a 28.4% decrease in invasion potential. In addition, RVD decreased remarkably with reduced osmotic water permeability.

Conclusion: Our results suggest that AQP5, which mediates water permeability and thus regulates cell shape and volume, is a potentially important determinant in cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.resp.2011.02.001DOI Listing

Publication Analysis

Top Keywords

water permeability
20
osmotic water
16
spc-a1 cells
12
cell migration
12
cell
8
cell volume
8
volume regulation
8
fluorescence intensity
8
water
7
volume
5

Similar Publications

Extensive agricultural regions commonly face issues of poor groundwater management, non-standard agricultural production practices, and unordered discharge of domestic pollution, leading to a continuous decline in groundwater quality and a sharp increase in risks. A comprehensive understanding of groundwater conditions and pollution is a crucial step in effectively addressing the water quality crisis. This study employs the Comprehensive Water Quality Index, Irrigation parameter, and Pollution Index to comprehensively investigate the groundwater quality in a typical agricultural area in Shandong, China, and assesses the suitability of groundwater for irrigation and the risks to human health.

View Article and Find Full Text PDF

The enduring pathogenicity of can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

Aim: Development and optimization of raloxifene hydrochloride loaded lipid nanocapsule hydrogel for transdermal delivery.

Method: A 3 Box-Behnken Design and numerical optimization was performed to obtain the optimized formulation. Subsequently, the optimized raloxifene hydrochloride loaded lipid nanocapsule was developed using phase inversion temperature and characterized for physicochemical properties.

View Article and Find Full Text PDF

Airborne wind energy is an emerging technology that can harness stronger and more consistent winds in higher altitudes using less mechanical and civil infrastructures than conventional wind energy systems. This article outlines a techno-economic study on using this technology for reverse osmosis seawater desalination in which a semi-permeable membrane process is used to remove salts and contaminants from water. To understand the techno-economic feasibility of such a system, this research work studies a 2 MW airborne wind-driven reverse osmosis plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!